g-C3N4基电极材料的制备及其电化学性能研究任务书
2020-04-25 20:20:31
1. 毕业设计(论文)的内容和要求
能源提供了人类生产消费以及生活所需能量和动力,在国民经济中起着至关重要的作用。
社会在不断发展的同时,煤、石油以及天然气等不可再生化石能源的大量使用对环境造成了极大破坏,并引发了严重的能源危机。
因此,清洁可再生能源的研究与利用以及相关的能量存储设备逐渐成为研究人员关注的重点之一。
2. 参考文献
[1] Zhu J, Xu Z, Lu B. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications[J]. Nano Energy, 2014, 7(7): 114-123. [2] Mei Y, Hui X. Exploration and progress of high-energy supercapacitors and related electrode materials[J]. Science China, 2015, 58(11): 1851-1863. [3] Xin Z, Beatriz Mendoza S, Dobson P J, et al. The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices[J]. Nanoscale, 2011, 3(3): 839-855. [4] Babakhani B, Ivey D G. Improved capacitive behavior of electrochemically synthesized Mn oxide/PEDOT electrodes utilized as electrochemical capacitors[J]. Electrochimica Acta, 2010, 55(12): 4014-4024. [5] Zhu J, Xu Z, Lu B. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications[J]. Nano Energy, 2014, 7(7): 114-123. [6] Mesemanolis A, Mademlis C, Kioskeridis I. High-Efficiency Control for a Wind Energy Conversion System With Induction Generator[J]. IEEE Transactions on Energy Conversion, 2012, 27(4): 958-967. [7] Hall P J, Mirzaeian M, Fletcher S I, et al. Energy storage in electrochemical capacitors: Designing functional materials to improve performance[J]. Energy Environmental Science, 2010, 3(9): 1238-1251. [8] 许慧丽. 二氧化锰与二维纳米材料的复合及其在电化学中的应用研究[D]. 广州: 华南理工大学, 2017. [9] Zhang Y, Feng H, Wu X, et al. Progress of electrochemical capacitor electrode materials: A review[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4889-4899. [10] Guoping W, Lei Z, Jiujun Z. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. [11] Yanwen M, Pan L, Sedloff J W, et al. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes[J]. Acs Nano, 2015, 9(2): 1352-1359. [12] Qian W, Sun F, Xu Y, et al. Human hair-derived carbon flakes for electrochemical supercapacitors[J]. Energy Environmental Science, 2013, 7(1): 379-386. [13] Ma J, Xue T, Xue Q. Sugar-derived carbon/graphene composite materials as electrodes for supercapacitors[J]. Electrochimica Acta, 2014, 115: 566-572. [14] Li Z, Xu Z, Tan X, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors[J]. Energy Environmental Science, 2013, 6(3): 871-878. [15] Pan S, Lin H, Deng J, et al. Novel Wearable Energy Devices Based on Aligned Carbon Nanotube Fiber Textiles[J]. Advanced Energy Materials, 2015, 5(4): 1-7. [16] 侯敏, 邓先伦, 孙康, 等. 超级电容器用活性炭电极材料研究进展[J]. 生物质化学工程, 2015, 49(3): 59-64. [17] Hulicova D, Kodama M, Hatori H. Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and NonAqueous Supercapacitors[J]. Chemistry of Materials, 2006, 18(9): 2318-2326. [18] 刘哲. 氮掺杂多孔炭的制备及其电化学性能研究[D]. 大连: 大连理工大学, 2013. [19] Kroke E, Schwarz M, Horath-Bordon E, et al. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures[J]. New Journal of Chemistry, 2002, 26(5): 508-512. [20] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. [21] Nesting D C, Badding J V. High-pressure synthesis of sp(2)-bonded carbon nitrides[J]. Chemistry of Materials, 1996, 8(7): 1535-1539. [22] Li C, Cao C B, Zhu H S. Graphitic carbon nitride thin films deposited by electrodeposition[J]. Materials Letters, 2004, 58(12): 1903-1906. [23] Guo Q, Xie Y, Wang X, et al. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures[J]. Chemical Physics Letters, 2003, 380(1): 84-87. [24] 梁庆华. 石墨相氮化碳的结构调控及增强光催化性能研究[D]. 北京: 清华大学, 2016. [25] Yuan Y, Zhang L, Xing J, et al. High-yield synthesis and optical properties of g-C3N4[J]. Nanoscale, 2015, 7(29): 12343-12350. [26] Xiaodong Z, Xiao X, Hui W, et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging[J]. Journal of the American Chemical Society, 2013, 135(1): 18-21. [27] She X, Xu H, Xu Y, et al. Exfoliated graphene-like carbon nitride in organic solvents: Enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2 [J]. Journal of Materials Chemistry A, 2014, 2(8): 2563-2570. [28] Sano T, Tsutsui S, Koike K, et al. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase[J]. Journal of Materials Chemistry A, 2013, 1(21): 6489-6496. [29] Lichan C, Danjun H, Shuyan R, et al. Preparation of graphite-like carbon nitride nanoflake film with strong fluorescent and electrochemiluminescent activity[J]. Nanoscale, 2013, 5(1): 225-230. [30] Niu P, Zhang L, Liu G, et al. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770. [31] Qiu P, Chen H, Xu C, et al. Fabrication of an exfoliated graphitic carbon nitride as highly active visible light photocatalyst[J]. Journal of Materials Chemistry A, 2015, 3(48): 24237-24244. [32] Wu C, Lu X, Xu K, et al. Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity[J]. Journal of Materials Chemistry A, 2014, 2(44): 18924-18928. [33] Guo W, Wang J Y, Fan C, et al. Synthesis of Carbon Self-Repairing Porous g-C3N4 Nanosheets/NiCo2S4 Nanoparticles Hybrid Composite as High-Performance Electrode Materials for Supercapacitors[J]. Electrochimica Acta, 2017, 253: 68-77. [34] Zhu H L, Zheng Y Q. Mesoporous Co3O4 anchored on the graphitic carbon nitride for enhanced performance supercapacitor[J]. Electrochimica Acta, 2018, 265: 372-378. [35] Kong L, Chen Q, Shen X, et al. Ionic Liquid Templated Porous Boron-Doped Graphitic Carbon Nitride Nanosheet Electrode for High-Performance Supercapacitor[J]. Electrochimica Acta, 2017, 245: 249-258. [36] Shan Q Y, Guo X L, Dong F, et al. Single atom (K/Na) doped graphitic carbon Nitride@MnO2 as an efficient electrode Material for supercapacitor[J]. Materials Letters, 2017, 202: 103-106. [37] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
3. 毕业设计(论文)进程安排
2019.1.5-2019.1.22 查阅文献资料,了解研究背景实验内容 2019.1.23-2019.2.20 外文翻译 2019.2.21-2019.3.7 撰写开题报告、准备开题 2019.3.8-2019.4.15确定方案、准备器材和原料,用热聚合法制备石墨相氮化碳,进行性能测试和分析表征 2019.4.16-2019.4.30 整理数据、阶段小结、期中交流 2019.5.4-2019.5.15 水热法制备石墨相氮化碳/硫化镍复合材料,进行性能测试和分析表征 2019.5.15-2019.5.24 实验数据整理和总结 2019.5.25-2019.6.6 撰写和修改论文 2019.6.7-2019.6.14 准备答辩和完成