DMF气氛辅助制备大晶粒钙钛矿太阳能电池任务书
2020-04-17 20:26:23
1. 毕业设计(论文)的内容和要求
在过去几年中,一种新型的太阳能电池出现在光伏领域,即钙钛矿太阳能电池。
这种电池是在染料敏化太阳能电池基础上发展起来的,它把染料敏化电池中的液体电解质替换为具有钙钛矿结构的固体电解质材料,也就是说采用有机金属卤化物(ch3nh3pbx3, x=br, i, cl)代替了传统的染料,所以称其为钙钛矿太阳能电池。
这种电池虽然起步较晚,但是其效率发展之快令人刮目相看,在2009年首次被制备出来时,其光电效率仅有3.8%,经过几年的发展,现在钙钛矿太阳能电池的光电效率已经超过了23%。
2. 参考文献
[1] Green M A, Emery, K, Hishikawa Y, et al. Solar cell efficiency tables (version 41)[J]. Progress in Photovoltaics, 2013, 21 (1): 1-11. [2] Green M A. The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell Evolution[J]. Progress in Photovoltaics, 2009, 17 (3): 183-189. [3] Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu(In,Ga)Se-2 thin-film solar cells beyond 20%[J]. Progress in Photovoltaics, 2011, 19 (7SI): 894-897. [4] Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies[J]. Renewable amp; Sustainable Energy Reviews, 2011, 15 (3): 1625-1636. [5] Mathew S, Yella A, Gao P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature Chemistry, 2014, 6 (3): 242-247. [6] Congreve D N, Lee J, Thompson N J, et al. External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission-Based Organic Photovoltaic Cell[J]. Science, 2013, 340 (6130): 334-337. [7] Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. Journal of The American Chemical Society, 2009, 131 (17): 6050- . [8] Im J H, Lee C R, Park J W, et al. 6.5% Efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3 (10): 4088-4093. [9] Wojciechowski K., Saliba M, Leijtens T, et al., Sub-150 degrees C processed meso-superstructured perovskite solar cells with enhanced efficiency[J]. Energy amp; Environmental Science, 2014, 7 (3): 1142-1147. [10] Wei J, Zhao Q, Li H, et al. Perovskite solar cells: Promise of photovoltaics[J]. Scientia Sinica Technologica, 2014, 44 (8): 801-821. [11] Perez M D, Borek C, Forrest S R, et al. Molecular and Morphological Influences on the Open Circuit Voltages of Organic Photovoltaic Devices[J]. Journal of the American Chemical Society, 2009, 131 (26): 9281-9286. [12] Pan C F, Dong L, Zhu G, et al. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array[J]. Nature Photonics, 2013, 7 (9): 752-758. [13] Park N G. Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell[J]. Journal of Physical Chemistry Letters, 2013, 4 (15): 2423-2429. [14] Kim H S, Lee J W, Yantara N, et, al. High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer[J]. Nano Letters, 2013, 13 (6): 2412-2417. [15] 陈少杰, 张秋禹, 张力. 有机/无机杂化光伏电池[J]. 现代化工, 2009, 29: 87-91. [16] Kippelen B, Bredas J L. Organic photovoltaics[J]. Energy Environmental Science, 2009, 2 (3): 251-261. [17] Barth S, Bassler H, et al. Synthesis and application of one-dimensional semiconductors[J]. Progress in Materials Science, 2010, 55 (6): 563-627. [18] Hodes G. Perovskite-Based Solar Cells[J]. Science, 2013, 342 (6515): 317-318. [19] Edri E, Kirmayer S, Mukhopadhyay S, et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClX perovskite solar cells[J]. Nature Communications, 2014, 5: 3461. [20] Markov D E, Amesterdam E, Blom P W M, et al. Accurate Measurement of the Exciton Diffusion Length in a Conjugated Polymer Using a Heterostructure with a Side-Chain Cross-Linked Fullerene Layer[J]. Journal of Physical Chemistry A, 2005, 109 (24): 5266-5274. [21] Halls J J M, Pichler K, Friend R H, et al. Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell[J]. Applied Physics Letters, 1996, 68 (22): 3120-3122. [22] Baranovskii S D, Wiemer M, Nenashev A V, et al. Calculating the Efficiency of Exciton Dissociation at the Interface between a Conjugated Polymer and an Electron Acceptor[J]. Journal of Physical Chemistry Letters, 2012, 3 (9): 1214-1221. [23] Buxton G A, Clarke N. Predicting structure and property relations in polymeric photovoltaic devices[J]. Physical Review B, 2006, 74 (8): 085207. [24] Nenashev A V, Baranovskii S D, Wiemer M, et al. Theory of Exciton Dissociation at the Interface Between a Conjugated Polymer and an Electron Acceptor[J]. Physical Review B, 2011, 84 (3): 035210. [25] Wang Y, Gould T, Zhang H M, et al. Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3[J]. Physical Chemistry Chemical Physics, 2014, 14 (4): 1424-1429. [26] Ratcliff E L, Zacher B, Armstrong N R. Selective Interlayers and Contacts in Organic Photovoltaic Cells[J]. Journal of Physical Chemistry Letters, 2011, 2 (11): 1337-1350. [27] Lee M M, Teuscher J, Miyasaka T, et al. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites[J]. Science, 2012, 338 (6107): 643-647. [28] Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13 (9): 897-903. [29] Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501 (7467): 395-398. [30] Xiao Z G, Bi C, Shao Y C, et al. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers[J]. Energy amp; Eenvironmental Science, 2014, 7 (8): 2619-2623. [31] Chen Q, Zhou H P, Hong Z R, et al. Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process[J]. Journal of the American Chemical Society, 2014, 136 (2): 622-625.
3. 毕业设计(论文)进程安排
2019.1.5-2019.1.22 查阅文献资料,了解研究背景实验内容
2019.1.23-2019.2.20 外文翻译
2019.2.21-2019.3.7 撰写开题报告、准备开题