氧化钼对n型硅异质结电池性能影响的模拟研究任务书
2020-05-01 08:48:35
1. 毕业设计(论文)的内容和要求
带有本征层的n型异质结(hit)太阳能电池结合了晶硅和非晶硅薄膜电池的两者优点,保证了较高的电池转换效率,同时采取低温生产工艺,降低了成本,还避免了电池的光致衰退效应,具有较好的稳定性。
不过,电池发射结p型非晶硅薄膜对入射太阳光有较强的吸收,因此寻找合适的不吸收或弱吸收的替代材料作为p型发射层来提高电池效率显得十分关键。
本课题将采用功函数较高的氧化钼(moox)层作为p层来降低光吸收,利用afors-het仿真软件对含有moox层的hit电池(ito/moox/i-a-si/n-c-si/i-a-si/n -a-si/ito)的性能进行系统研究,寻求最佳器件结构,为n型异质结太阳能电池的优化工艺提供有价值的思路。
2. 参考文献
[1] Yu J, Fu Y, Zhu L, et al. Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide[J]. Solar Energy, 2018, 159: 704-709. [2] Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017, 2(5): 17032. [3] Sacchetto D, Jeangros Q, Christmann G, et al. ITO/MoOx/a-Si: H (i) Hole-Selective Contacts for Silicon Heterojunction Solar Cells: Degradation Mechanisms and Cell Integration[J]. IEEE Journal of Photovoltaics, 2017, 7(6): 1584-1590. [4] Untila G G, Zaks M B. Silicon-based photovoltaics: State of the art and main lines of development[J]. Thermal engineering, 2011, 58(11): 932-947. [5] Macco B, Vos M F J, Thissen N F W, et al. Low‐temperature atomic layer deposition of MoOx for silicon heterojunction solar cells[J]. physica status solidi (RRL)#8211;Rapid Research Letters, 2015, 9(7): 393-396. [6] Bivour M, Temmler J, Steinkemper H, et al. Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 142: 34-41. [7] Gerling L G, Mahato S, Morales-Vilches A, et al. Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells[J]. Solar Energy Materials and Solar Cells, 2016, 145: 109-115. [8] He J, Gao P, Ling Z, et al. High-efficiency silicon/organic heterojunction solar cells with improved junction quality and interface passivation[J]. ACS nano, 2016, 10(12): 11525-11531. [9] Battaglia C, De Nicolas S M, De Wolf S, et al. Silicon heterojunction solar cell with passivated hole selective MoOx contact[J]. Applied Physics Letters, 2014, 104(11): 113902. [10] Battaglia C, Yin X, Zheng M, et al. Hole selective MoO x contact for silicon solar cells[J]. Nano letters, 2014, 14(2): 967-971. [11] Liu R, Lee S T, Sun B. 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer[J]. Advanced Materials, 2014, 26(34): 6007-6012. [12] Masuko K, Shigematsu M, Hashiguchi T, et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1433-1435. [13] Dwivedi N, Kumar S, Bisht A, et al. Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve#8764; 27% efficiency[J]. Solar energy, 2013, 88: 31-41. [14] Shi J, Shen L, Liu Y, et al. MoOx modified ITO/a-Si: H (p) contact for silicon heterojunction solar cell application[J]. Materials Research Bulletin, 2018, 97: 176-181. [15] Bullock J, Cuevas A, Allen T, et al. Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells[J]. Applied Physics Letters, 2014, 105(23): 232109. [16] Sun Y, Takacs C J, Cowan S R, et al. Efficient, air‐stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer[J]. Advanced materials, 2011, 23(19): 2226-2230. [17] Bullock J, Samundsett C, Cuevas A, et al. Proof-of-concept p-type silicon solar cells with molybdenum oxide local rear contacts[J]. IEEE Journal of Photovoltaics, 2015, 5(6): 1591-1594. [18] Mimura H, Hatanaka Y. Energy‐band discontinuities in a heterojunction of amorphous hydrogenated Si and crystalline Si measured by internal photoemission[J]. Applied physics letters, 1987, 50(6): 326-328. [19] He J, Zhang W, Ye J, et al. 16% efficient silicon/organic heterojunction solar cells using narrow band-gap conjugated polyelectrolytes based low resistance electron-selective contacts[J]. Nano Energy, 2018, 43: 117-123. [20] Liu Y, Zhang J, Wu H, et al. Low-temperature synthesis TiOx passivation layer for organic-silicon heterojunction solar cell with a high open-circuit voltage[J]. Nano Energy, 2017, 34: 257-263. [21] Battaglia C, Cuevas A, De Wolf S. High-efficiency crystalline silicon solar cells: status and perspectives[J]. Energy Environmental Science, 2016, 9(5): 1552-1576.
3. 毕业设计(论文)进程安排
2018.12.17-2019.1.11, 文献调研,完成开题报告 1.12-1.18,完成英文翻译 2.25-4.7,深刻理解n型硅异质结电池工作原理,学习和掌握AFORS-HET程序 4.8-5.5,进行模拟、初步分析结果和中期检查 5.6-5.26, 进一步完善模拟结果,并分析全部数据 5.27-6.2, 论文撰写 6.3-6.6, 论文修改 6.7-6.10, 准备PPT,答辩
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料