高温电解CO2中Nb掺杂La0.6Sr0.4FeO3-δ燃料极材料研究任务书
2020-04-18 19:40:14
1. 毕业设计(论文)的内容和要求
1、内容: 固体氧化物电解池(solid oxide electrolysis cell,soec)是一种能在中高温下将热能和电能高效环保地直接转化为燃料中化学能的全固态化学电解装置。
soec可在高温和中温下直接将co2电解成co,在当前能源和环境问题日益凸显的社会背景下,soec技术必将具有广阔的应用前景。
电解池通常由燃料极,电解质和空气极组成,燃料极通常是最关键的一环。
2. 参考文献
[1] Zhu D D, Liu J L, Qiao S Z. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide [J]. Advanced Materials, 2016, 28:3423. [2] Berger E, Hahn M W, Przybilla T, et al. Impact of solvents and surfactants on the self-assembly of nanostructured amine functionalized silica spheres for CO2, capture [J]. Journal of Energy Chemistry, 2016, 25(2):327. [3] Su X, Xu J, Liang B, et al. Catalytic carbon dioxide hydrogenation to methane: A review of recent studies[J]. Journal of Energy Chemistry, 2016, 25(4):553-565. [4] Graves C, Ebbesen S D, Mogensen M. Co-electrolysis of CO2, and H2O in solid oxide cells: Performance and durability[J]. Solid State Ionics, 2011, 192(1):398-403. [5] Bierschenk D M, Wilson J R, Barnett S A. High efficiency electrical energy storage using a methane#8211;oxygen solid oxide cell[J]. Energy Environmental Science, 2011, 4(3):944-951. [6] S. H. Jensen, C. Graves, M. Mogensen, et al. Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4[J]. Energy Environmental Science, 2015, 8(8):2471-2479. [7] Meng, N., M.K.H. Leung, and D.Y.C. Leung, Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC). International Journal of Hydrogen Energy, 2008. 33(9): p. 2337-2354. [8] Ebbesen S D, Sun X, Mogensen M B. Understanding the processes governing performance and durability of solid oxide electrolysis cells.[J]. Faraday Discussions, 2015, 182:393-422. [9] Jevgenija Manerova, Denis J Cumming, Derek C Sinclair, et al. In-Situ Raman Spectroscopy Probing of Solid Oxide Electrolysis Cells[J]. Meeting Abstracts, 2014. [10] Traulsen M L, Mcintyre M D, Norrman K, et al. Reversible Decomposition of Secondary Phases in BaO Infiltrated LSM Electrodes#8212;Polarization Effects[J]. Advanced Materials Interfaces, 2016, 3(24):1600750. [11] Cheng C Y, Kelsall G H, Kleiminger L. Reduction of CO2 to CO at Cu#8211;ceria-gadolinia (CGO) cathode in solid oxide electrolyser[J]. Journal of Applied Electrochemistry, 2013, 43(11):1131-1144. [12] Cao Z, Zhang Y, Miao J, et al. Titanium-substituted lanthanum strontium ferrite as a novel electrode material for symmetrical solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(46):16572-16577. [13] Yoon S E, Song S H, Choi J, et al. Coelectrolysis of steam and CO2 in a solid oxide electrolysis cell with ceramic composite electrodes[J]. International Journal of Hydrogen Energy, 2014, 39(11):5497-5504. [14] Santos-Pentilde;a J, Cruz-Yusta M, Soudan P, et al. Carbon and transition metal containing titanium phosphates as electrodes for lithium ion batteries[J]. Solid State Ionics, 2006, 177(26):2667-2674. [15] Raza M A, Rahman I Z, Beloshapkin S. Synthesis of nanoparticles of La0.75Sr0.25Cr0.5Mn0.5O3#8722;δ, (LSCM) perovskite by solution combustion method for solid oxide fuel cell application[J]. Journal of Alloys Compounds, 2009, 485(1):593-597. [16] Yue X, Irvine J T S. (La,Sr)(Cr,Mn)O3 /GDC cathode for high temperature steam electrolysis and steam-carbon dioxide co-electrolysis[J]. Solid State Ionics, 2012, 225(14):131-135. [17] Xing R, Wang Y, Liu S, et al. Preparation and characterization of La0.75Sr0.25Cr0.5Mn0.5O3#8722;δ -yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation[J]. Journal of Power Sources, 2012, 208(208):276-281. [18] Shisong Li, Yuanxin Li, Yun Gan,. Electrolysis of H2O and CO2, in an oxygen-ion conducting solid oxide electrolyzer with a La0.2Sr0.8TiO3 δ, composite cathode[J]. Journal of Power Sources, 2012, 218:244-249. [19] Gan L, Ye L, Tao S, et al. Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis.[J]. Physical Chemistry Chemical Physics, 2016, 18(4):3137-3143. [20] Ye L, Zhang M, Huang P, et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures[J]. Nature Communications, 2017, 8:14785.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2月25日 ~3月3日 确定课题,布置任务,阅读文献资料,并进一步检索文献。
3月4日 ~3月17日 翻译英文文献,完成开题报告;制订实验计划,了解实验仪器设备及实验方法。
3月18日 ~ 3月24日 修改开题报告及英文文献翻译,进行开题,根据意见完善实验计划。
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料