NiO/NaCl可控合成及催化水与甲醇重整制氢任务书
2020-06-30 21:51:29
1. 毕业设计(论文)的内容和要求
1.毕业论文主要内容 21世纪以来,氢能作为一种无污染、可再生的优质能源,受到人们的普遍关注。
其中,在较低温度下的水与甲醇重整制氢已成为目前氢能制备的研究热点。
近期,石川教授等人研发出一种pt/a-moc催化剂,在低温条件下,利用甲醇和水作为反应原料获得极高的制氢效率:190℃时,其放氢速率可达18046 molh2/ molpt/h,较传统催化剂活性提升近两个数量级,为燃料电池原位制氢提供了新思路[1]。
2. 参考文献
[1] L. Lin, W. Zhou, G. Rui, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Low-temperature hydrogen production from water and methanol using Pt/a-MoC catalysts, Nature, 544.7648(2017):80. [2] C.-Y. Wang, Y.-J. Zhang, W.-K. Wang, D.-N. Pei, G.-X. Huang, J.-J. Chen, X. Zhang, H.-Q. Yu, Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation, Applied Catalysis B-Environmental, 221 (2018) 320-328. [3] J. Sun, S. Wu, S.-Z. Yang, Q. Li, J. Xiong, Z. Yang, L. Gu, X. Zhang, L. Sun, Enhanced photocatalytic activity induced by sp(3) to sp(2) transition of carbon dopants in BiOCl crystals, Applied Catalysis B-Environmental, 221 (2018) 467-472. [4] T.W.P. Seadira, G. Sadanandam, T. Ntho, C.M. Masuku, M.S. Scurrell, Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol, Applied Catalysis B-Environmental, 222 (2018) 133-145. [5] J. Goscianska, R. Pietrzak, J. Matos, Catalytic performance of ordered mesoporous carbons modified with lanthanides in dry methane reforming, Catalysis Today, 301 (2018) 204-216. [6] Y. Zheng, K. Li, H. Wang, D. Tian, Y. Wang, X. Zhu, Y. Wei, M. Zheng, Y. Luo, Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane, Applied Catalysis B: Environmental, 202 (2017) 51-63. [7] X. Zhang, R. You, D. Li, T. Cao, W. Huang, Reaction Sensitivity of Ceria Morphology Effect on Ni/CeO2 Catalysis in Propane Oxidation Reactions, ACS Applied Materials Interfaces, 9 (2017) 35897-35907. [8] I. Zamboni, C. Courson, A. Kiennemann, Fe-Ca interactions in Fe-based/CaO catalyst/sorbent for CO2 sorption and hydrogen production from toluene steam reforming, Applied Catalysis B: Environmental, 203 (2017) 154-165. [9] J.W. Yoon, H. Chang, S.-J. Lee, Y.K. Hwang, D.-Y. Hong, S.-K. Lee, J.S. Lee, S. Jang, T.-U. Yoon, K. Kwac, Y. Jung, R.S. Pillai, F. Faucher, A. Vimont, M. Daturi, G. Ferey, C. Serre, G. Maurin, Y.-S. Bae, J.-S. Chang, Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites, Nat Mater, 16 (2017) 526-531. [10] P. Yang, H. Ou, Y. Fang, X. Wang, A Facile Steam Reforming Strategy to Delaminate Layered Carbon Nitride Semiconductors for Photoredox Catalysis, Angewandte Chemie-International Edition, 56 (2017) 3992-3996. [11] J. Yang, J.K. Cooper, F.M. Toma, K.A. Walczak, M. Favaro, J.W. Beeman, L.H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, I.D. Sharp, A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes, Nat Mater, 16 (2017) 335-341. [12] Z. Xue, Y. Shen, S. Zhu, P. Li, Y. Zeng, Z. Xi, Y. Cai, Autothermal reforming of ethyl acetate for hydrogen production over Ni3La7Oy/Al2O3 catalyst, Energy Conversion and Management, 146 (2017) 34-42. [13] H. Wang, H.D. Abruna, IrPdRu/C as H-2 Oxidation Catalysts for Alkaline Fuel Cells, Journal of the American Chemical Society, 139 (2017) 6807-6810. [14] C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Energy-Saving Electrolytic Hydrogen Generation: Ni2P Nanoarray as a High-Performance Non-Noble-Metal Electrocatalyst, Angewandte Chemie International Edition, 56 (2017) 842-846. [15] G. Sui, Z. Xue, D. Zhou, Y. Wang, Y. Shen, Y. Zong, Y. Liu, T. Qiu, S. Zhu, The influence factors on CeSn0.8W0.6Ox/TiO2 for catalytic removals of NO, CO and C3H8, Journal of Industrial and Engineering Chemistry, 51 (2017) 229-236. [16] V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces, Nature Materials, 16 (2017) 57-69. [17] V. Shanmugam, R. Zapf, S. Neuberg, V. Hessel, G. Kolb, Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors, Applied Catalysis B: Environmental, 203 (2017) 859-869. [18] M. Retuerto, A.G. Pereira, F.J. P閞ez-Alonso, M.A. Pe馻, J.L.G. Fierro, J.A. Alonso, M.T. Fern醤dez-D韆z, L. Pascual, S. Rojas, Structural effects of LaNiO3 as electrocatalyst for the oxygen reduction reaction, Applied Catalysis B: Environmental, 203 (2017) 363-371. [19] C.M. P閜in, G. Geneste, A. Dewaele, M. Mezouar, P. Loubeyre, Synthesis of FeH5: A layered structure with atomic hydrogen slabs, Science, 357 (2017) 382-385. [20] W.X. Peng, L.S. Wang, M. Mirzaee, H. Ahmadi, M.J. Esfahani, S. Fremaux, Hydrogen and syngas production by catalytic biomass gasification, Energy Conversion and Management, 135 (2017) 270-273. [21] U. Oemar, K. Hidajat, S. Kawi, High catalytic stability of Pd-Ni/Y2O3 formed by interfacial Cl for oxy-CO2 reforming of CH4, Catalysis Today, 281, Part 2 (2017) 276-294. [22] M. Menor, S. Sayas, A. Chica, Natural sepiolite promoted with Ni as new and efficient catalyst for the sustainable production of hydrogen by steam reforming of the biodiesel by-products glycerol, Fuel, 193 (2017) 351-358. [23] M. Luneau, E. Gianotti, F.C. Meunier, C. Mirodatos, E. Puzenat, Y. Schuurman, N. Guilhaume, Deactivation mechanism of Ni supported on Mg-Al spinel during autothermal reforming of model biogas, Applied Catalysis B: Environmental, 203 (2017) 289-299. [24] F.J. Lopez-Tenllado, J. Hidalgo-Carrillo, V. Montes, A. Marinas, F.J. Urbano, J.M. Marinas, L. Ilieva, T. Tabakova, F. Reid, A comparative study of hydrogen photocatalytic production from glycerol and propan-2-ol on M/TiO2 systems (M=Au, Pt, Pd), Catalysis Today, 280 (2017) 58-64. [25] S. Liu, D. Mei, L. Wang, X. Tu, Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor, Chemical Engineering Journal, 307 (2017) 793-802. [26] L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Low-temperature hydrogen production from water and methanol using Pt/alpha-MoC catalysts, Nature, (2017). [27] X. Li, C. Zhu, Y. Song, D. Du, Y. Lin, Solvent co-mediated synthesis of ultrathin BiOCl nanosheets with highly efficient visible-light photocatalytic activity, RSC Advances, 7 (2017) 10235-10241. [28] M. Li, Y. Zhang, X. Li, S. Yu, X. Du, Y. Guo, H. Huang, In-depth insight into facet-dependent charge movement behaviors and photo-redox catalysis: A case of {001} and {010} facets BiOCl, Journal of Colloid and Interface Science, 508 (2017) 174-183. [29] L. Li, Y. Song, B. Jiang, K. Wang, Q. Zhang, A novel oxygen carrier for chemical looping reforming: LaNiO3 perovskite supported on montmorillonite, Energy, 131 (2017) 58-66. [30] D. Li, R. Li, M. Lu, X. Lin, Y. Zhan, L. Jiang, Carbon dioxide reforming of methane over Ru catalysts supported on Mg-Al oxides: A highly dispersed and stable Ru/Mg(Al)O catalyst, Applied Catalysis B: Environmental, 200 (2017) 566-577. [31] B. Li, L. Shao, B. Zhang, R. Wang, M. Zhu, X. Gu, Understanding size-dependent properties of BiOCl nanosheets and exploring more catalysis, Journal of Colloid and Interface Science, 505 (2017) 653-663. [32] J. Kothandaraman, S. Kar, R. Sen, A. Goeppert, G.A. Olah, G.K.S. Prakash, Efficient Reversible Hydrogen Carrier System Based on Amine Reforming of Methanol, Journal of the American Chemical Society, 139 (2017) 2549-2552. [33] X. Huang, C. Ji, C. Wang, F. Xiao, N. Zhao, N. Sun, W. Wei, Y. Sun, Ordered mesoporous CoO-NiO-Al2O3 bimetallic catalysts with dual confinement effects for CO2 reforming of CH4, Catalysis Today, 281, Part 2 (2017) 241-249. [34] W.-C. Huang, Y.-L. Kuo, Y.-M. Su, Y.-H. Tseng, H.-Y. Lee, Y. Ku, A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process, Chemical Engineering Journal, 316 (2017) 15-23. [35] H. Huang, B. Dai, W. Wang, C. Lu, J. Kou, Y. Ni, L. Wang, Z. Xu, Oriented Built-in Electric Field Introduced by Surface Gradient Diffusion Doping for Enhanced Photocatalytic H2 Evolution in CdS Nanorods, Nano Letters, (2017). [36] J.W. Han, J.S. Park, M.S. Choi, H. Lee, Uncoupling the size and support effects of Ni catalysts for dry reforming of methane, Applied Catalysis B: Environmental, 203 (2017) 625-632. [37] I. Grigioni, M.V. Dozzi, M. Bernareggi, G.L. Chiarello, E. Selli, Photocatalytic CO2 reduction vs. H2 production: The effects of surface carbon-containing impurities on the performance of TiO2-based photocatalysts, Catalysis Today, 281, Part 1 (2017) 214-220. [38] E.D. German, M. Sheintuch, Methane steam reforming rates over Pt, Rh and Ni(111) accounting for H tunneling and for metal lattice vibrations, Surface Science, 656 (2017) 126-139. [39] R.P. Dias, I.F. Silvera, Observation of the Wigner-Huntington transition to metallic hydrogen, Science, 355 (2017) 715-718. [40] M. Compagnoni, A. Tripodi, I. Rossetti, Parametric study and kinetic testing for ethanol steam reforming, Applied Catalysis B-Environmental, 203 (2017) 899-909. [41] D. Yao, Y. Zhang, P.T. Williams, H. Yang, H. Chen, Co-production of hydrogen and carbon nanotubes from real-world waste plastics: Influence of catalyst composition and operational parameters, Applied Catalysis B-Environmental, 221 (2018) 584-597.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2017.12.23~2017.12.31 课题任务书 2018.1.1~2018.1.12 开题报告、文献综述与英文翻译 2018.2.22~2018.5.2 试验材料准备、设计实验方案、进行实验 2018.5.3~2018.5.8 实验、中期答辩 2018.5.9~2018.5.30 实验、整理实验数据、毕业论文撰写 2018.5.31~2018.6.10 毕业论文撰写、答辩
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料