氮掺杂纳米多孔碳脱除NO研究任务书
2020-06-11 20:55:54
1. 毕业设计(论文)的内容和要求
1#12289;#35770;#25991;#20027;#35201;#20869;#23481;#65306; (1) #32508;#36848;#35838;#39064;#32972;#26223;#24847;#20041;#21450;#22269;#20869;#22806;#30740;#31350;#36827;#23637;#12290; (2) #37319;#29992;#39640;#28201;#27694;#28304;#20998;#35299;#27861;#21046;#22791;#27694;#25530;#26434;#22810;#23380;#32435;#31859;#30899;#65292;#20248;#21270;#20803;#32032;#32452;#25104;#65292;#30830;#23450;#26679;#21697;#26368;#20339;#33073;#38500;NO#25928;#29575;#12290;#21033;#29992;XRD#20998;#26512;#20854;#29289;#30456;#32467;#26500;#65292;#37319;#29992;SEM#34920;#24449;#20854;#34920;#38754;#24418;#35980;#65292;#21033;#29992;TEM#35266;#23519;#26679;#21697;#23618;#29366;#32467;#26500;#65292;#37319;#29992;BET#30830;#23450;#26679;#21697;#30340;#27604;#34920;#38754;#31215;#12289;#23380;#23481;#23380;#24452;#65292;#21033;#29992;FT-IR#30740;#31350;#26679;#21697;#30340;#23448;#33021;#22242;#21464;#21270;#12290;#25506;#31350;#33073;#38500;NO#30340;#21453;#24212;#26426;#29702;#12290; (3) #24635;#32467;#23454;#39564;#24037;#20316;#65292;#25776;#20889;#27605;#19994;#35770;#25991;#12290; 2#12289;#27605;#19994;#35770;#25991;#20027;#35201;#35201;#27714; (1) #23398;#29983;#24212;#39640;#24230;#37325;#35270;#27605;#19994;#35774;#35745;#65288;#35770;#25991;#65289;#24037;#20316;#65292;#20005;#26684;#35201;#27714;#33258;#24049;#65292;#33258;#35273;#36981;#23432;#23398;#20064;#32426;#24459;#21644;#21508;#39033;#35268;#31456;#21046;#24230;#12290; (2) #27605;#19994;#35774;#35745;#65288;#35770;#25991;#65289;#26399;#38388;#65292;#23454;#34892;#32771;#21220;#21046;#24230;#65292;#19968;#33324;#19981;#20934;#35831;#20551;#65292;#30830;#22240;#29305;#27530;#24773;#20917;#38656;#35201;#35831;#20551;#26102;#65292;#39035;#25353;#29031;#23398;#26657;#26377;#20851;#35268;#23450;#25191;#34892;#12290;#23398;#29983;#32570;#21220;#65288;#21253;#25324;#30149;#12289;#20107;#20551;#65289;#32047;#35745;#36229;#36807;#35838;#31243;#35774;#35745;#26102;#38388;1/3#20197;#19978;#32773;#65292;#21462;#28040;#31572;#36777;#36164;#26684;#65292;#19981;#20104;#35780;#23450;#25104;#32489;#65292;#39035;#37325;#26032;#34917;#20570;#12290; (3) #24517;#39035;#29420;#31435;#23436;#25104;#27605;#19994;#35774;#35745;#65288;#35770;#25991;#65289;#65292;#19968;#26086;#21457;#29616;#22871;#29992;#21644;#25220;#34989;#20182;#20154;#25104;#26524;#32773;#65292;#25353;#20316;#24330;#35770;#22788;#12290;#23545;#23398;#20064;#19981;#21162;#21147;#12289;#19981;#35748;#30495;#12289;#25975;#34893;#20102;#20107;#12289;#22238;#36991;#25351;#23548;#65292;#26410;#23436;#25104;#21508;#38454;#27573;#20219;#21153;#21450;#20005;#37325;#36829;#32426;#32773;#65292;#25351;#23548;#25945;#24072;#26377;#26435;#19981;#35753;#20854;#21442;#21152;#31572;#36777;#12290; (4) #27605;#19994;#35774;#35745;#65288;#35770;#25991;#65289;#32467;#26463;#26102;#65292;#24212;#25353;#27605;#19994;#35774;#35745;#65288;#35770;#25991;#65289;#23553;#38754;#12289;#35774;#35745;#65288;#35770;#25991;#65289;#20219;#21153;#20070;#12289;#35774;#35745;#65288;#35770;#25991;#65289;#35828;#26126;#20070;#20869;#23481;#20854;#20013;#21253;#25324;#65288;#30446;#24405;#12289;#27491;#25991;#12289;#21442;#32771;#25991;#29486;#12289;#38468;#24405;#65289;#31561;#27425;#24207;#24038;#20391;#35013;#35746;#25104;#20876;#32479;#19968;#25918;#22312;#27605;#19994;#35774;#35745;#65288;#35770;#25991;#65289;#34955;#20869;#65292;#20132;#30001;#25351;#23548;#25945;#24072;#35780;#38405;#12290;
2. 参考文献
1. Gao, S., Chen, Y., Fan, H., Wei, X., Hu, C., Luo, H., et al. (2014). Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. Journal of Materials Chemistry A, 2(10), 3317-3324. 2. Yang, J., Xie, J., Zhou, X., Zou, Y., Tang, J., Wang, S., et al. (2014). Functionalized nN-doped porous carbon nanofiber webs for a lithium杝ulfur battery with high capacity and rate performance. Journal of Physical Chemistry C, 118(4), 1800-1807. 3. Li, Y., Zhu, S., Liu, Q., Chen, Z., Gu, J., Zhu, C., et al. (2013). N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(vi) removal. Water Research, 47(12), 4188-97. 4. Wang, H., Wang, K., Song, H., Li, H., Ji, S., Wang, Z., et al. (2015). N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction. Rsc Advances, 5(60), 48965-48970. 5. Hou, Y., Cui, S., Wen, Z., Guo, X., Feng, X., Chen, J. (2015). Strongly coupled 3D hybrids of N-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis. Small, 11(44), 5940-5948. 6. Song, H., Li, H., Wang, H., Key, J., Ji, S., Mao, X., et al. (2014). Chicken bone-derived N-doped porous carbon materials as an oxygen reduction electrocatalyst. Electrochimica Acta, 147, 520-526. 7. Ferrero, G. A., Fuertes, A. B., Sevilla, M. (2014). N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 3(6), 2914-2923. 8. Kim, N. D., Kim, W., Ji, B. J., Oh, S., Kim, P., Kim, Y., et al. (2008). Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation. Journal of Power Sources, 180(1), 671-675. 9. Shrestha, S., Ashegi, S., Timbro, J., Mustain, W. E. (2002). Influence of chemistry and structure on the ORR activity of Pt supported on N-doped mesoporous carbon. Carbon, 40(12), 2085-2100. 10. Gu, J. M., Kim, W. S., Hwang, Y. K., Huh, S. (2013). Template-free synthesis of N-doped porous carbons and their gas sorption properties. Carbon, 56(5), 208-217. 11. Yang, T., Liu, J., Zhou, R., Chen, Z., Xu, H., Qiao, S., et al. (2014). N-doped mesoporous carbon spheres as the oxygen reduction reaction catalysts. Journal of Materials Chemistry A, 2(42), 18139-18146. 12. Dhawale, D. S., Mane, G. P., Joseph, S., Anand, C., Ariga, K., Vinu, A. (2013). Enhanced supercapacitor performance of N-doped mesoporous carbons prepared from a gelatin biomolecule. ChemPhysChem, 14(8), 1563?569. 13. Wang, B., Lin, M., Ang, T. P., Chang, J., Yang, Y., Borgna, A. (2012). Liquid phase aerobic oxidation of benzyl alcohol over Pd and Rh catalysts on N-doped mesoporous carbon: effect of the surface acido-basicity. Catalysis Communications, 25(15), 96-101. 14. Wang, R., Wang, H., Zhou, T., Key, J., Ma, Y., Zhang, Z., et al. (2015). The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction. Journal of Power Sources, 274, 741-747. 15. Wang, B., Ang, T. P., Borgna, A. (2012). A rapid hard template method for the synthesis of N-doped mesoporous carbon replicated from tud-1. Microporous Mesoporous Materials, 158(8), 99-107. 16. Bayatsarmadi, B., Zheng, Y., Jaroniec, M., Qiao, S. (2015). Soft-templating synthesis of N-doped mesoporous carbon nanospheres for enhanced oxygen reduction reaction. Chemistry ?An Asian Journal, 10(7), 1546?553. 17. Yang, Y., Jia, L., Hou, B., Li, D., Wang, J., Sun, Y. (2013). The correlation of interfacial interaction and catalytic performance of N-doped mesoporous carbon supported cobalt nanoparticles for fischer杢ropsch synthesis. Journal of Physical Chemistry C, 118(1), 268-277. 18. Chen, Y. Z., Cai, G. R., Wang, Y. M., Qiang, X., Yu, S. H., Jiang, H. L. (2016). Palladium nanoparticles stabilized with N-doped porous carbons derived from metal-organic frameworks for selective catalysis in biofuel upgrade: the role of catalyst wettability. Green Chemistry, 74(6), 556?57. 19. Geng, J., Xue, D., Liu, X., Shi, Y., Sun, L. (2016). N-doped porous carbons for CO2 capture: rational choice of N-containing polymer with high phenyl density as precursor. Aiche Journal. 20. Li, X., Fang, Y., Lin, X., Tian, M., An, X., Fu, Y., et al. (2015). MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/mwcnt hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. Journal of Materials Chemistry A, 3(33), 17392-17402. 21. Mengxia, S., Changping, R., Yan, C., Chunhuan, J., Kelong, A., Lehui, L. (2015). Covalent entrapment of cobalt-iron sulfides in n-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions. Acs Applied Materials Interfaces, 7(2), 1207-18. 22. Liu, R., Zhang, H., Liu, S., Zhang, X., Wu, T., Ge, X., et al. (2016). Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional n-doped porous carbon electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 18(5), 439-445. 23. S醤chez-S醤chez, ?, Su醨ez-Garc韆, F., Mart韓ez-Alonso, A., Tasc髇, J. M. (2015). Synthesis, characterization and dye removal capacities of N-doped mesoporous carbons. Journal of Colloid Interface Science, 450, 91-100. 24. Ouyang, J., Li, Z. Q., Zhang, J., Wang, C., Wang, J., Xia, X. H., et al. (2014). A rapid and sensitive method for hydroxyl radical detection on a microfluidic chip using an n-doped porous carbon nanofiber modified pencil graphite electrode. Analyst, 139(13), 3416-22. 25. Ferrero, G. A., Fuertes, A. B., Sevilla, M. (2014). N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. Journal of Materials Chemistry A, 3(6), 2914-2923. 26. Wang, H., Lu, X., Li, L., Li, B., Cao, D., Wu, Q., et al. (2016). Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries. Nanoscale, 8(14), 7595-7603. 27. Guo, L., Jiang, W. J., Zhang, Y., Hu, J. S., Wei, Z. D., Wan, L. J. (2015). Embedding pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. Acs Catalysis, 5(5), 2903-2909. 28. Hou, Y., Cui, S., Wen, Z., Guo, X., Feng, X., Chen, J. (2015). Electrocatalysis: strongly coupled 3D hybrids of N-doped porous carbon nanosheet/coni alloy-encapsulated carbon nanotubes for enhanced electrocatalysis (small 44/2015). Small, 11(44), 5940-5948. 29. Zhou, Y. X., Chen, Y. Z., Cao, L., Lu, J., Jiang, H. L. (2015). Conversion of a metal-organic framework to N-doped porous carbon incorporating Co and Co nanoparticles: direct oxidation of alcohols to esters. Chemical Communications, 51(39), 8292-5. 30. Meng, L. Y., Meng, W., Chen, T., Jin, L. Y. (2014). CO2, adsorption capacity of activated N-doping porous carbons prepared from graphite nanofibers/polypyrrole. Journal of Applied Polymer Science, 131(15), 338-347. 31. Liang, Q., Su, H., Yan, J., Leung, C., Cao, S., Yuan, D. (2014). N-doped mesoporous carbon as a bifunctional material for oxygen reduction reaction and supercapacitors. Chinese Journal of Catalysis, 35(35), 1078-1083. 32. Zhengfa, Y. U., Wang, X., Liu, N., Liu, Y. (2013). Recent progress of N-doped porous carbon materials. Chemical Industry Engineering Progress, 32(4), 824-823. 33. Zhou, M., Li, X., Cui, J., Liu, T., Cai, T., Zhang, H., et al. (2012). Synthesis and capacitive performances of graphene/N-doping porous carbon composite with high nitrogen content and two-dimensional nanoarchitecture. International Journal of Electrochemical Science, 7(10), 9984-9996.
3. 毕业设计(论文)进程安排
2016.12.12-2016.12.25#65306; #20102;#35299;#35838;#39064;#32972;#26223;#65292;#26597;#38405;#25991;#29486;#65292;#29087;#24713;#35838;#39064;#21450;#23454;#39564;#35774;#22791;#65307; 2016.12.26 ~ 2017.1.15#65306;#23436;#25104;#22806;#25991;#25991;#29486;#32763;#35793;#65292;#25776;#20889;#24320;#39064;#25253;#21578;#65292;#30830;#23450;#23454;#39564;#26041;#26696;#65307; 2017.3.14 ~ 2017.4.5#65306; #20248;#21270;#21512;#25104;#27694;#25530;#26434;#32435;#31859;#22810;#23380;#30899;#65292;#27979;#35797;#33073;#38500;NO#24615;#33021;#65307; 2017.4.6 ~ 2017.4.19#65306; #20013;#26399;#26816;#26597;#19982;#31572;#36777;#65307; 2017.4. 20~ 2017.5.10#65306; #32771;#23519;#24433;#21709;#22240;#32032;#65292;#23545;#27694;#25530;#26434;#32435;#31859;#22810;#23380;#30899;#36827;#34892;#34920;#24449;#20998;#26512;#65307; 2017.5.11 ~ 2017.5.15#65306; #38405;#35835;#30456;#20851;#25991;#29486;#65292;#32467;#21512;#23454;#39564;#21644;#34920;#24449;#20998;#26512;#32467;#26524;#65292;#25506;#35752;#33073;#38500;NO#26426;#29702;#65307; 2017.5.16~ 2017.5.29#65306; #25776;#20889;#27605;#19994;#35770;#25991;#65307; 2017.5.30~ 2017.6.5#65306; #23436;#25104;#27605;#19994;#35770;#25991;#21450;#31572;#36777;#65307; 2017.6.6~ 2017.6.14#65306; #24635;#32467;#12289;#24402;#26723;#12290;
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料