2,6-二氨基嘌呤核苷的高效酶法合成任务书
2020-06-11 20:55:26
1. 毕业设计(论文)的内容和要求
论文内容 本实验以来源于米氏硫胺素芽孢杆菌中的核苷磷酸化酶为生物催化剂,以尿苷,2,6二氨基嘌呤为底物来实现2,6-二氨基嘌呤核苷的酶法合成,并通过温度、ph、供体与受体的摩尔比以及反应时间的优化从而实现2,6-二氨基嘌呤核苷的高效酶法合成。
论文要求 1.文献查阅 掌握文献查阅的一般方法,学会使用计算机在中国期刊网,维普数据库,超星数字图书馆,美国化学学会(acs)数据库,ca,sci等检索资源上查阅关于威兰胶发酵工艺尤其是补料分批发酵的相关文献。
2.文献阅读及综述 阅读与课题相关的外文及中文文献,了解国内外的研究动态,撰写文献综述。
2. 参考文献
[1] 夏俊刚, 何逵夫, 谢希贤,等. 枯草芽孢杆菌嘌呤核苷磷酸化酶酶学性质研究及在利巴韦林酶法合成中的应用[J]. 中国生物工程杂志, 2010, 30(12):53-59. [2] 吴晓, 倪孟祥, 朱晓丽,等. 利用嘧啶核苷磷酸化酶基因工程菌酶法合成5-氟尿苷的转化率影响因素的研究[J]. 药物生物技术, 2008, 15(4):282-285. [3] 高彤, 李文舟, 梁胜华,等. 基因工程菌酶法合成抗癌新药6-甲基嘌呤-2'-脱氧核苷[J]. 工业微生物, 2007, 37(1):8-13. [4] 郭勇莉, 丁庆豹, 欧伶,等. 酶法合成抗病毒药物阿糖腺苷[J]. 生物技术, 2006, 16(1):32-35. [5] 易喻, 江林林, 梅建凤,等. 酶法合成2#8217;-脱氧-5-氟尿苷的研究[J]. 药物生物技术, 2015(1):9-13. [6] 李喻, 窦洁, 曹静,等. 乙酰短杆菌酶法合成2′-脱氧鸟苷[J]. 药物生物技术, 2011(2):119-123. [7] Abramchik Y A, Timofeev V I, Zhukhlistova N E, et al. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli[J]. Crystallography Reports, 2015, 60(4):521-524. [8] Zhou X, Mikhailopulo I A, Bournazou M N C, et al. Immobilization of thermostable nucleoside phosphorylases on MagReSyn 庐;, epoxide microspheres and their application for the synthesis of 2,6-dihalogenated purine nucleosides[J]. Journal of Molecular Catalysis B Enzymatic, 2015, 115:119-127. [9] Zhou X, Szeker K, Jiao L, et al. Synthesis of 2,6‐Dihalogenated Purine Nucleosides by Thermostable Nucleoside Phosphorylases[J]. Advanced Synthesis Catalysis, 2015, 357(6):1237-1244. [10] Zhu S, Song D, Gong C. Biosynthesis of nucleoside analogues via thermostable nucleoside phosphorylase[J]. Applied Microbiology and Biotechnology, 2013, 97(15):6769-78. [11] Iglesias L E, Lewkowicz E S, Medici R, et al. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs.[J]. Biotechnology Advances, 2015, 33(5):412-434. [12] Bagarolo M L, Porcelli M, Martino E, et al. Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase[J]. Biochimica et biophysica acta, 2015, 1854(10 Pt A):1458. [13] Fern#225;ndez-Lucas J, Fresco-Taboada A, De l M I, et al. One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media.[J]. Bioresource Technology, 2012, 115(115):63-9. [14] Vande V J, Liekens S, Mcguigan C, et al. The cytostatic activity of NUC-3073, a phosphoramidate prodrug of 5-fluoro-2'-deoxyuridine, is independent of activation by thymidine kinase and insensitive to degradation by phosphorolytic enzymes.[J]. Biochemical Pharmacology, 2011, 82(5):441-52. [15] Serra I, Bavaro T, Cecchini D A, et al. A comparison between immobilized pyrimidine nucleoside phosphorylase from Bacillus subtilis, and thymidine phosphorylase from Escherichia coli, in the synthesis of 5-substituted pyrimidine 2′-deoxyribonucleosides[J]. Journal of Molecular Catalysis B Enzymatic, 2013, 95:16-22.
3. 毕业设计(论文)进程安排
[1] 夏俊刚, 何逵夫, 谢希贤,等. 枯草芽孢杆菌嘌呤核苷磷酸化酶酶学性质研究及在利巴韦林酶法合成中的应用[J]. 中国生物工程杂志, 2010, 30(12):53-59. [2] 吴晓, 倪孟祥, 朱晓丽,等. 利用嘧啶核苷磷酸化酶基因工程菌酶法合成5-氟尿苷的转化率影响因素的研究[J]. 药物生物技术, 2008, 15(4):282-285. [3] 高彤, 李文舟, 梁胜华,等. 基因工程菌酶法合成抗癌新药6-甲基嘌呤-2'-脱氧核苷[J]. 工业微生物, 2007, 37(1):8-13. [4] 郭勇莉, 丁庆豹, 欧伶,等. 酶法合成抗病毒药物阿糖腺苷[J]. 生物技术, 2006, 16(1):32-35. [5] 易喻, 江林林, 梅建凤,等. 酶法合成2#8217;-脱氧-5-氟尿苷的研究[J]. 药物生物技术, 2015(1):9-13. [6] 李喻, 窦洁, 曹静,等. 乙酰短杆菌酶法合成2′-脱氧鸟苷[J]. 药物生物技术, 2011(2):119-123. [7] Abramchik Y A, Timofeev V I, Zhukhlistova N E, et al. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli[J]. Crystallography Reports, 2015, 60(4):521-524. [8] Zhou X, Mikhailopulo I A, Bournazou M N C, et al. Immobilization of thermostable nucleoside phosphorylases on MagReSyn 庐;, epoxide microspheres and their application for the synthesis of 2,6-dihalogenated purine nucleosides[J]. Journal of Molecular Catalysis B Enzymatic, 2015, 115:119-127. [9] Zhou X, Szeker K, Jiao L, et al. Synthesis of 2,6‐Dihalogenated Purine Nucleosides by Thermostable Nucleoside Phosphorylases[J]. Advanced Synthesis Catalysis, 2015, 357(6):1237-1244. [10] Zhu S, Song D, Gong C. Biosynthesis of nucleoside analogues via thermostable nucleoside phosphorylase[J]. Applied Microbiology and Biotechnology, 2013, 97(15):6769-78. [11] Iglesias L E, Lewkowicz E S, Medici R, et al. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs.[J]. Biotechnology Advances, 2015, 33(5):412-434. [12] Bagarolo M L, Porcelli M, Martino E, et al. Multiple disulfide bridges modulate conformational stability and flexibility in hyperthermophilic archaeal purine nucleoside phosphorylase[J]. Biochimica et biophysica acta, 2015, 1854(10 Pt A):1458. [13] Fern#225;ndez-Lucas J, Fresco-Taboada A, De l M I, et al. One-step enzymatic synthesis of nucleosides from low water-soluble purine bases in non-conventional media.[J]. Bioresource Technology, 2012, 115(115):63-9. [14] Vande V J, Liekens S, Mcguigan C, et al. The cytostatic activity of NUC-3073, a phosphoramidate prodrug of 5-fluoro-2'-deoxyuridine, is independent of activation by thymidine kinase and insensitive to degradation by phosphorolytic enzymes.[J]. Biochemical Pharmacology, 2011, 82(5):441-52. [15] Serra I, Bavaro T, Cecchini D A, et al. A comparison between immobilized pyrimidine nucleoside phosphorylase from Bacillus subtilis, and thymidine phosphorylase from Escherichia coli, in the synthesis of 5-substituted pyrimidine 2′-deoxyribonucleosides[J]. Journal of Molecular Catalysis B Enzymatic, 2013, 95:16-22.