可充电铝空电池阴极催化剂Co-MnO2/C的制备及性能任务书
2020-05-02 17:11:32
1. 毕业设计(论文)的内容和要求
内容:铝空气电池的大规模商业化受到了与铝阳极相关的一些固有缺点的阻碍,且电池只能放电不可充电。
研究表明,解决上述问题的一种行之有效的方法是用离子液体电解质代替传统的水系电解质,极大程度上能够抑制铝阳极由于析氢腐蚀引起的钝化层和自放电,并为实现铝空气电池的可充电奠定了基础。
此外,空气阴极是铝空气电池充放电另一个关键因素,氧还原反应(orr)和氧生成反应(oer)的过电势严重降低了可充电铝空气电池的输出功率和循环效率。
2. 参考文献
[1] M. Pino, J. Chacon, E. Fatais, P. Oct on, Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries, J. Power Sources 299 (2015) 195. [2] S. Zein El Abedin, P. Giridhar, P. Schwab, F. Endres, An Experimental and Electrodeposition of nanocrystalline aluminium from a chloroaluminate ionic liquid, Electrochem. Commun. 12 (2014) 1084. [3] P. Eiden, Q. Liu, S. Zein El Abedin, F. Endres, L. Krossing, Theoretical study of the aluminium species present in mixtures of AlCl3 with the ionic liquids [BMP]Tf2N and [EMIm]Tf2N, Chem. Eur J. 15 (2009) 3426. [4] H.M.A. Abood, A.P. Abbott, B.D. Ballantyne, K.S. Ryder, Do all ionic liquids need organic cations? Characterisation of [AlCl2 . nAmide]嗀lCl4 - and comparison with imidazolium based systems, Chem. Commun. 47 (2011) 3523. [5] M. Kar, T.J. Simons, M. Forsyth, D.R. Mac Farlane, Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective, Phys. Chem. Chem. Phys. 16 (2014) 18658. [6] C.R. Boston, J.W. Hastie, R.E. Hester, Advances in Molten Salt Chemistry, Springer US, Boston, MA, MA, 1971. [7] L. Qingfeng, H.A. Hjuler, R.W. Berg, N.J. Bjerrum, Electrochemical deposition and dissolution of aluminum in NaAlCl4 melts, influence of MnCl2 and sulfide addition, J. Electrochem. Soc. 137 (1990) 2794. [8] N. Takami, N. Koura, Aluminum negative electrode battery, Electrochim. Acta 33 (1988) 1137. [9] R. Huglen, F.W. Poulsen, G. Mamantov, R. Marassi, G.M. Begun, Raman spectral studioes of elemental sulfur in Al2Cl6 and chloroaluminate melts, Inorg. Nucl. Chem. Lett. 14 (1978) 167. [10] Qi-Xian Qin and M, Skyllas-Kazacos, Electrodeposition and dissolution of aluminium in ambient temperature molten salt system aluminium chloride nbutylpyridinium chloride, J. Electroanal. Chem. 168 (1984) 193. [11] X.G. Sun, Y. Fang, X. Jiang, K. Yoshii, T. Tsuda, S. Dai, Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries, Chem. Commun. 52 (2016) 292. [12] Y. Nakayama, Y. Senda, H. Kawasaki, N. Koshitani, S. Hosoi, Y. Kudo, H. Morioka, M. Nagamine, Sulfone-based electrolytes for aluminium rechargeable batteries, Phys. Chem. Chem. Phys. 17 (2015) 5758. [13] C.J. Allen, J. Hwang, R. Kautz, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K.M. Abraham, Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li/Air batteries, J. Phys. Chem. C 116 (2012), 207555. [14] C. Li, O. Fontaine, S.A. Freunberger, L. Johnson, S. Grugeon, S. Laruelle, P.G. Bruce, M. Armand, Aprotic LieO2 battery: influence of complexing agents on oxygen reduction in an aprotic solvent, J. Phys. Chem. C 118 (2014) 3393. [15] E. Switzer, R. Zeller, Q. Chen, K. Sieradzki, D.A. Buttry, C. Friesen, Oxygen reduction reaction in ionic liquids: the addition of protic species, J. Phys. Chem. C 117 (2013) 8683. [16] D.A. Walsh, A. Ejigu, J. Smith, P. Licence, Kinetics and mechanism of oxygen reduction in a protic ionic liquid, Chem. Phys. 15 (2013) 7548. [17] M.C. Buzzeo, O.V. Klymenko, J.D. Wadhawan, C. Hardacre, K.R. Seddon, R.G. Compton, Voltammetry of oxygen in the room-temperature ionic liquids 1-Ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide and hexyltriethylammonium bis((trifluoromethyl)sulfonyl)imide: one-electron reduction to form superoxide. Steady-state and transient behavior in the same cyclic voltammogram resulting from widely different diffusion coefficients of oxygen and superoxide, J. Phys. Chem. A 107 (2003) 8872. [18] C. Pozo-Gonzalo, A.A.J. Torriero, M. Forsyth, D.R. MacFarlane, P.C. Howlett, Redox chemistry of the superoxide ion in a phosphonium-based ionic liquid in the presence of water, J. Phys. Chem. Lett. 4 (2013) 1834. [19] D. Gelman, B. Shvartsev, Y. Ein-Eli, Aluminum-air battery based on an ionic liquid electrolyte, J. Mater. Chem. A 2 (2014) 20237. [20] R. Mori, Suppression of byproduct accumulation in rechargeable aluminumair batteries using non-oxide ceramic materials as air cathode materials, Sustain. Energy Fuels 1 (2017) 1082
3. 毕业设计(论文)进程安排
2018.12.14-2018.12.31 中国期刊网、维普数据库以及外文数据库等数据库查阅国内外相关文献: 2019.1.1-2019.1.15 撰写开题报告及外文文献翻译,开题报告答辩; 2019.2.24-2019.4.24 Co-MnO2/C催化剂制备及结构性能表征,组装电池并进行电池性能测试; 2019.4.25-2019.5.10 中期检查与答辩; 2019.5.11-2019.5.19 针对前期实验,进行相应的改善,提高电池电化学性能; 2019.5.20-2019.5.31 撰写毕业论文; 2019.6.01-2019.6.14 完成毕业论文及答辩; 2018.6.15-2019.6.30 总结、归档
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料