梯度掺杂发射层对p型HIT电池性能影响的理论研究任务书
2020-05-01 08:48:30
1. 毕业设计(论文)的内容和要求
带有本征层的hit太阳能电池结合了晶硅和非晶硅薄膜电池的两者优点,保证了较高的电池转换效率,同时采取低温生产工艺,降低了成本,还避免了电池的光致衰退效应,具有较好的稳定性。
最近五年hit电池发展很快,最高转换效率已经达到26.6%,离理论极限效率29%很接近,目前如何进一步提高电池效率就会很难。
本课题将采用梯度掺杂发射层来替代传统的均匀掺杂层来提升电池效率,利用afors-het仿真软件对含有梯度掺杂发射层的hit电池性能进行系统研究,寻求最佳器件结构,为p型hit太阳能电池的优化工艺提供有价值的思路。
2. 参考文献
[1] Masuko K, Shigematsu M, Hashiguchi T, et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1433-1435. [2] Taguchi M, Yano A, Tohoda S, et al. 24.7% record efficiency HIT solar cell on thin silicon wafer[J]. IEEE Journal of Photovoltaics, 2014, 4(1): 96-99. [3] Mishima T, Taguchi M, Sakata H, et al. Development status of high-efficiency HIT solar cells[J]. Solar Energy Materials and Solar Cells, 2011, 95(1): 18-21. [4] Yoshikawa K, Kawasaki H, Yoshida W, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%[J]. Nature Energy, 2017, 2(5): 17032. [5] Ganji J, Kosarian A, Kaabi H. Numerical modeling of thermal behavior and structural optimization of a-Si: H solar cells at high temperatures[J]. Journal of Computational Electronics, 2016, 15(4): 1541-1553. [6] Bullock J, Samundsett C, Cuevas A, et al. Proof-of-concept p-type silicon solar cells with molybdenum oxide local rear contacts[J]. IEEE Journal of Photovoltaics, 2015, 5(6): 1591-1594. [7] Yao Y, Xu X, Zhang X, et al. Enhanced efficiency in bifacial HIT solar cells by gradient doping with AFORS-HET simulation[J]. Materials Science in Semiconductor Processing, 2018, 77: 16-23. [8] Ghannam M, Shehadah G, Abdulraheem Y, et al. On the possible role of the interfacial inversion layer in the improvement of the performance of hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells [HIT][J]. Solar Energy Materials and Solar Cells, 2015, 132: 320-328. [9] Yoshikawa K, Yoshida W, Irie T, et al. Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology[J]. Solar Energy Materials and Solar Cells, 2017, 173: 37-42. [10] Dwivedi N, Kumar S, Bisht A, et al. Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve#8764; 27% efficiency[J]. Solar energy, 2013, 88: 31-41. [11] Mimura H, Hatanaka Y. Energy‐band discontinuities in a heterojunction of amorphous hydrogenated Si and crystalline Si measured by internal photoemission[J]. Applied physics letters, 1987, 50(6): 326-328. [12] Oppong-Antwi L, Huang S, Li Q, et al. Influence of defect states and fixed charges located at the a-Si: H/c-Si interface on the performance of HIT solar cells[J]. Solar Energy, 2017, 141: 222-227. [13] He J, Zhang W, Ye J, et al. 16% efficient silicon/organic heterojunction solar cells using narrow band-gap conjugated polyelectrolytes based low resistance electron-selective contacts[J]. Nano Energy, 2018, 43: 117-123. [14] Liu Y, Zhang J, Wu H, et al. Low-temperature synthesis TiOx passivation layer for organic-silicon heterojunction solar cell with a high open-circuit voltage[J]. Nano Energy, 2017, 34: 257-263. [15] Rahmouni M, Datta A, Chatterjee P, et al. Carrier transport and sensitivity issues in heterojunction with intrinsic thin layer solar cells on N-type crystalline silicon: A computer simulation study[J]. Journal of Applied Physics, 2010, 107(5): 054521. [16] Werner J, Dubuis G, Walter A, et al. Sputtered rear electrode with broadband transparency for perovskite solar cells[J]. Solar Energy Materials and Solar Cells, 2015, 141: 407-413. [17] Battaglia C, Cuevas A, De Wolf S. High-efficiency crystalline silicon solar cells: status and perspectives[J]. Energy Environmental Science, 2016, 9(5): 1552-1576. [18] Shu B, Das U, Chen L, et al. Design of anti-reflection coating for surface textured interdigitated back contact silicon hetero-junction solar cell[C]//Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. IEEE, 2012: 002258-002262. [19] Yang Z, Shang A, Qin L, et al. Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres[J]. Optics letters, 2016, 41(7): 1329-1332.
3. 毕业设计(论文)进程安排
2018.12.17-2019.1.11, 文献调研,完成开题报告 1.12-1.18,完成英文翻译 2.25-4.7,深刻理解p型HIT电池原理,学习和掌握AFORS-HET程序 4.8-5.5,进行模拟、初步分析结果和中期检查 5.6-5.26,进一步完善模拟结果,并分析全部数据 5.27-6.2,论文撰写 6.3-6.6,论文修改 6.7-6.10,准备PPT,答辩
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料