肿瘤微环境响应靶向性BODIPY衍生物的合成及其肿瘤治疗性能研究任务书
2020-04-26 12:54:33
1. 毕业设计(论文)的内容和要求
本课题涉及合成具有亚细胞靶向和过氧化氢响应的BODIPY衍生物,借助季铵盐的的线粒体靶向性,通过二茂铁官能团催化过氧化氢分解形成高活性的羟基自由基,提升细胞氧化应激。
通过光热作用和氧化应激的协同作用,破坏线粒体的膜结构及其DNA,促使其失能,达到杀死癌细胞并消除肿瘤,实现肿瘤治疗的目的。
2. 参考文献
1. Tang Z, Liu Y, He M, et al. Chemodynamic Therapy: Tumour Microenvironment‐Mediated Fenton and Fenton‐like Reactions[J]. Angewandte Chemie International Edition, 2019, 58(4): 946-956. 2. Shen Z, Liu T, Li Y, et al. Fenton-Reaction-Acceleratable Magnetic Nanoparticles for Ferroptosis Therapy of Orthotopic Brain Tumors[J]. ACS nano, 2018, 12(11): 11355-11365. 3. Feng L, Xie R, Wang C, et al. Magnetic Targeting, Tumor Microenvironment-Responsive Intelligent Nanocatalysts for Enhanced Tumor Ablation[J]. ACS nano, 2018, 12(11): 11000-11012. 4. Liu Y, Zhen W, Jin L, et al. All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication[J]. ACS nano, 2018, 12(5): 4886-4893. 5. Ranji-Burachaloo H, Gurr P A, Dunstan D E, et al. Cancer Treatment through Nanoparticle-Facilitated Fenton Reaction[J]. ACS nano, 2018, 12(12): 11819-11837. 6. Kwon B, Han E, Yang W, et al. Nano-Fenton reactors as a new class of oxidative stress amplifying anticancer therapeutic agents[J]. ACS applied materials interfaces, 2016, 8(9): 5887-5897. 7. Ding Y, Wan J, Zhang Z, et al. Localized Fe (II)-induced cytotoxic reactive oxygen species generating nanosystem for enhanced anticancer therapy[J]. ACS applied materials interfaces, 2018, 10(5): 4439-4449. 8. Cheng H, Zhu J Y, Li S Y, et al. An O2 self‐sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy[J]. Advanced Functional Materials, 2016, 26(43): 7847-7860. 9. Zhang K, Meng X, Cao Y, et al. Metal#8211;Organic Framework Nanoshuttle for Synergistic Photodynamic and Low‐Temperature Photothermal Therapy[J]. Advanced Functional Materials, 2018, 28(42): 1804634。
10. Zhang C, Bu W, Ni D, et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized Fenton reaction[J]. Angewandte Chemie International Edition, 2016, 55(6): 2101-2106. 11. Lin L S, Song J, Song L, et al. Simultaneous Fenton‐like Ion Delivery and Glutathione Depletion by MnO2‐Based Nanoagent to Enhance Chemodynamic Therapy[J]. Angewandte Chemie, 2018, 130(18): 4996-5000. 12. Liu Y, Zhen W, Wang Y, et al. One-Dimensional Fe2 P Acts as a Fenton Agent in Response to NIR II Light and Ultrasound for Deep Tumor Synergetic Theranostics[J]. Angewandte Chemie (International ed. in English), 2019, 58(8): 2407. 13. Wang Y, Yin W, Ke W, et al. Multifunctional polymeric micelles with amplified fenton reaction for tumor ablation[J]. Biomacromolecules, 2018, 19(6): 1990-1998. 14. Ma B, Wang S, Liu F, et al. Self-Assembled Copper#8211;Amino Acid Nanoparticles for in Situ Glutathione ”AND” H2O2 Sequentially Triggered Chemodynamic Therapy[J]. Journal of the American Chemical Society, 2018, 141(2): 849-857. 15. Yu Z, Zhou P, Pan W, et al. A biomimetic nanoreactor for synergistic chemiexcited photodynamic therapy and starvation therapy against tumor metastasis[J]. Nature communications, 2018, 9(1): 5044.
3. 毕业设计(论文)进程安排
3月1日-3月15日 准备阶段 对相关因为文献进行阅读和翻译,撰写实验计划和开题报告 3月16日-4月底 材料合成阶段 合成系列中间体和BODIPY衍生物,确认分子结构 4月底-5月中旬 材料性质表征阶段 纳米材料的制备和表征、测试材料的光学性质和光热性能、研究过氧化氢响应性质 5月中旬-6月初 论文撰写和答辩
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料