生物质碳材料的光热效应促进光催化产氢的研究任务书
2020-04-23 20:05:45
1. 毕业设计(论文)的内容和要求
一直以来,光催化制备氢气的体系中,对于太阳光的利用很大一部分都是局限于紫以及少部分可见光波段。
众所周知,紫外光只占太阳光能量的5%,可见光占46%,而红外光部分则占太阳光能量的49%)。
所以,能将太阳光的红外部分的能量利用起来,势必是一个很有前景的工作。
2. 参考文献
[1] Cao S., Low J., Yu J., et al. Polymeric photocatalysts based on graphitic carbon nitride [J]. Adv Mater, 2015, 27(13): 2150-76. [2] Michael R. Hoffmann S. T. M., Wonyong Choi, and Detlef W. Bahnemannt. Environmental Applications of Semiconductor Photocatalysis [J]. Chem Rev, 1995, 69-96. [3] Ong W. J., Tan L. L., Ng Y. H., et al. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? [J]. Chem Rev, 2016, 116(12): 7159-329. [4] Li X., Yu J., Jaroniec M. Hierarchical photocatalysts [J]. Chem Soc Rev, 2016, 45(9): 2603-36. [5] Ullattil S. G., Narendranath S. B., Pillai S. C., et al. Black TiO 2 Nanomaterials: A Review of Recent Advances [J]. Chem Eng J, 2018, 343(708-36. [6] Wang X., Wang F., Sang Y., et al. Full-Spectrum Solar-Light-Activated Photocatalysts for Light-Chemical Energy Conversion [J]. Adv Energy Mater, 2017, 7(23): 1700473. [7] Huang H., Dai B., Wang W., et al. Oriented Built-in Electric Field Introduced by Surface Gradient Diffusion Doping for Enhanced Photocatalytic H-2 Evolution in CdS Nanorods [J]. Nano Lett, 2017, 17(6): 3803-8. [8] Jing D., Guo L., Zhao L., et al. Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration [J]. Int J Hydrogen Energ, 2010, 35(13): 7087-97. [9] Ni M., Leung M. K. H., Leung D. Y. C., et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J]. Renewable and Sustainable Energy Reviews, 2007, 11(3): 401-25. [10] Honda A. F. K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nat Chem, 1972, 238(37-8. [11] Andrew Mills S. L. H. An overview of semiconductor photocatalysis [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 1-35. [12] Kou J., Lu C., Wang J., et al. Selectivity Enhancement in Heterogeneous Photocatalytic Transformations [J]. Chem Rev, 2017, 117(3): 1445-514. [13] Yang M. Q., Gao M., Hong M., et al. Visible-to-NIR Photon Harvesting: Progressive Engineering of Catalysts for Solar-Powered Environmental Purification and Fuel Production [J]. Adv Mater, 2018, e1802894. [14] Volonakis G., Giustino F. Surface properties of lead-free halide double perovskites: Possible visible-light photo-catalysts for water splitting [J]. Appl Phys Lett, 2018, 112(24): 243901. [15] Wang Z., Yang C., Lin T., et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania [J]. Energ Environ Sci, 2013, 6(10): 3007. [16] Wang W.-N., Huang C.-X., Zhang C.-Y., et al. Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light [J]. Applied Catalysis B: Environmental, 2018, 224(854-62. [17] Wang R., Lu K.-Q., Tang Z.-R., et al. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis [J]. J Mater Chem A, 2017, 5(8): 3717-34. [18] Reszczyńska J., Grzyb T., Sobczak J. W., et al. Visible light activity of rare earth metal doped (Er3 , Yb3 or Er3 /Yb3 ) titania photocatalysts [J]. Applied Catalysis B: Environmental, 2015, 163(40-9. [19] Qin W. P., Zhang D. S., Zhao D., et al. Near-infrared photocatalysis based on YF3 : Yb3 , Tm3 /TiO2 core/shell nanoparticles [J]. Chem Commun, 2010, 46(13): 2304-6. [20] Tian J., Sang Y., Yu G., et al. A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation [J]. Adv Mater, 2013, 25(36): 5075-80. [21] Wang Q., Hisatomi T., Jia Q., et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1 [J]. Nat Mater, 2016, 15(6): 611-5. [22] Ye L., Chu K. H., Wang B., et al. Noble-metal loading reverses temperature dependent photocatalytic hydrogen generation in methanol-water solutions [J]. Chem Commun (Camb), 2016, 52(78): 11657-60. [23] Zhang Q., Xu W., Wang X. Carbon nanocomposites with high photothermal conversion efficiency [J]. Science China Materials, 2018, 61(7): 905-14.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2019.01.10~2019.01.18 查阅国内外相关文献,完成文献翻译 2019.01.19~2019.02.24 开题报告撰写 2019.02.25~2019.04.05 按照实验计划进行实验 2019.04.07~2019.04.28 实验数据补充并进行中期检查 2019.05.02~2019.06.02 撰写毕业论文,准备答辩 2019.06.03~2019.06.14 毕业答辩
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料