可陶瓷化大流态地聚物材料设计与性能研究文献综述
2020-04-15 17:45:33
硅酸盐水泥已成为现代化建设与社会发展进步不可或缺的建筑材料之一.然而,普通硅酸盐水泥原材料煅烧过程中CO2的形成和释放造成了碳排放量增加1kg普通硅酸盐水泥生产过程中产生0.66-0.82kg碳排放全球水泥生产产生的CO2占人为二氧化碳排放的5%~7%[7].另一方面,生产过程中1400 ℃的高温条件消耗了大量的能量.因此低能耗高环保建筑材料的探索与研发已成为全球绿色建筑材料研究工作的重点。
. 地质聚合物是近几年来发展比较快的一种新型无机硅酸盐高聚合材料,它是由Davidovits 教授于20世纪70年代发现的一种新型绿色胶凝材料,并命名为Geopolymer[1,2]。现如今人们一般把多数采用天然矿物或者固体废弃物制备而成的由硅氧四面体和铝氧四面体聚合而成的具有非晶态和准晶态特征的三维氧化物网络凝胶体统一称为地质聚合物。该物质既具有有机高聚物、陶瓷的性能又兼有水泥的一些特征,同时其制备工艺比较简单,勿需采用生产硅酸盐水泥的“两磨一烧”工艺,仅将适量的偏高岭土和少量碱性激发剂溶液与大量天然或人工硅铝质材料相混合,在低于 100℃下或常温条件下养护,就可得到不同强度等级的无水泥熟料的高性能地聚合物材料[3,4]。为了充分利用工业废渣、保护环境,还可将粉煤灰、矿渣、硅灰等与粘土复合来制备地聚合物[5,6]。与以往的无机 Si-Al 质胶凝材料相比,其原材料为资源丰富、价格低廉的低钙 Si-Al 质材料,且生产过程中基本不排放 CO2,但其最显著的特点是耐久性能优异,可抵 1000~1200 ℃高温的炽烤而不损坏,其抗酸侵蚀性能与硅酸盐水泥相比可提高一个数量级。地质聚合物一系列优异的性能赋予它极其广阔的现实意义。
综合近几年的研究可知,在地质聚合物制备过程中,实验原料与碱性激活剂的选择范围非常广泛,一般情况下硅铝元素的来源主要是高岭土,但是粉煤灰、矿物废渣、烧粘土等也是可选择的原材料;碱激活剂方面除了氢氧化钾之外,氢氧化钠,硫酸钠,硫酸钾以及碳酸钠,硅酸钾等碱性盐类都可以作为反应的碱激活剂。利用矿山尾矿、煤研石、粉煤灰、钢渣、矿渣等生产地质聚合物,可有效根治此类固体废物造成的环境污染,部分消除造成浮尘天气的固体废物污染源,彻底消除某些尾矿中的重金属和残余氰化物对地表和地下水体的可能污染。随着材料在各行业的应用发展,提高材料强度、降低原材料的成本与能耗,提高材料的耐久性等多方面的需求也越来越强烈。由于地质聚合物在各方面的性能都很优异,因此地质聚合物是近年来国际上研究非常活跃的新型材料之一。
目前地质聚合物应用存在最大的问题是工作性能即流动性较差,无法满足大多数应用要求。综上本次课题拟制备流动性可满足浇注成型陶瓷胚体材料要求的地聚物材料,使用专用减水剂,设计制备不同的原料,配合比的地质聚合物胶凝材料,尝试研究出最大流动度的地聚物,并且研究大流态地聚物材料硬化过程,以及中温(低于600°C)烧结过程对低聚物材料晶相、孔隙结构、力学性能和耐久性能(抗折强度、耐酸碱腐蚀程度)影响规律。
{title}2. 研究的基本内容与方案
{title}2.1 基本内容
材料制备:利用粉煤灰、矿粉、硅灰、偏高岭土制备地质聚合物,并加入专用减水剂,进入标准养护。
材料表征:研究专用减水剂对不同地聚物流动度与凝结时间影响;研究大流态地聚物材料硬化过程,测试地质聚合物力学性能、微观结构随龄期变化,观察专用减水剂对地质聚合物水化过程影响;研究中温(低于600oC)烧结过程对地聚物材料晶相、孔隙结构、力学性能和耐久性能的影响规律; 。
2.2 研究目标
1、掌握可陶瓷化大流态地聚物的制备方法。
2、研究大流态地聚物材料硬化过程,测试地质聚合物力学性能、微观结构随龄期变化,观察专用减水剂对地质聚合物水化过程影响。
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料