钙钛矿光伏电池性能的理论模拟毕业论文
2022-04-14 20:52:45
论文总字数:20373字
摘 要
近来出现了一种被称为钙钛矿型太阳电池的新型电池,在这种薄膜太阳能电池中采用了钙钛矿结构的(CH3NH3)PbI3。因为它可以获得高的转换效率,同时,又采用全固态的形式,在电池设计和封装等方面,可以避免使用液体电解质引起的许多问题。
为了透彻领会这种甲胺铅碘钙钛矿太阳能电池的工作机理并且进一步提高其效率,本文通过使用wxAMPS模拟软件建立了钙钛矿太阳能电池的理论模型,在运行wxAMPS程序的环境下,运用数值模拟的方法,对钙钛矿电池光电转换效率进行理论计算。本文通过研究改变钙钛矿电池前背电极功函数,吸收层厚度、缺陷态密度及掺杂浓度与界面层缺陷态密度将会影响电池的开路电压,短路电流,填充因子以及效率,比较电池各传输层优化后的效率与基准电池的效率,总结出钙钛矿电池设计的最优配置和未来发展方向。
本文通过研究改变钙钛矿电池电极功函数,得出钙钛矿电池前电极功函数增大,光电转换效率减小,而随着背电极功函数增大,由于靠近背电极区域能带向上弯曲,。改变吸收层厚度,由于吸收层太薄,无法充分吸收光并产生足够的载流子。改变吸收层缺陷态密度,在缺陷态密度较小时,载流子的产生速率远大于复合速率,产生电场强度大,因此电池吸收层内部的缺陷态密度为8×10^12cm-3时,电池得到最大转换效率为20.50%。改变吸收层掺杂浓度,电池吸收层的掺杂浓度为1×10^12cm-3时,得到最大转换效率为19.11%。改变界面层缺陷态密度,随着缺陷态密度的增大,J0逐渐增大,Voc,FF逐渐减小,电池界面层缺陷态密度为8×10^14cm-3时,得到最大转换效率为20.11%。比较电池各传输层优化后的效率与基准电池的效率,得出电池在吸收层厚度为370nm,吸收层缺陷态密度为8×10^10cm-3,界面层缺陷态密度为8×10^14cm-3时,电池转换效率达到最大值25.10%。
关键词:太阳能电池 钙钛矿电池 wxAMPS程序模拟 转换效率
Theoretical simulation for the performance of perovskite cell
ABSTRACT
Recently a solar cell uses the perovskite structure of (CH3NH3) PbI3. It can get higher conversion efficiencies, and takes the form of all-solid-state, when you need do battery design and packaging and so on, you can avoid many problems caused by using liquid electrolytes. In just a few years, the photoelectric conversion efficiency of perovskite cells has raised to 20.1% from a low level at 3.8% in 2009, which has attracted much attention.
In order to understand the work mechanism of perovskite-type solar cells and improve its efficiency, we use wxAMPS simulation software to set up a theoretical model of perovskite-type solar cells. Its conversion efficiency is calculated by numerical simulation method in wxAMPS program environment. Through researching by changing calcium titanium mine battery front and back electrode work functions, absorption layer thickness, and defects state density and the doping type, interface layer defects state density ,we find it brings effects to Voc, Jsc, FF and η. We compare the efficiencies of battery after the transmission layer optimization and the efficiency of benchmark battery, and summary out calcium titanium mine battery design of optimal configuration and future development direction.
Through researching by changing calcium titanium mine battery electrode work function, obtained calcium titanium mine battery front electrode work function increases, photoelectric conversion efficiency reduced, and with back electrode work function increases, due to near back electrode regional can with up bent, conducive to on hole of absorption, photoelectric conversion efficiency increases, maximum conversion efficiency for 19.13%. Change absorption layer thickness, due to absorption layer too thin, cannot full absorption light and produce enough of carrier, when battery absorption layer thickness for 370nm, battery get maximum conversion efficiency for 19.11%. Change absorption layer defects state density, when defects state density smaller, carrier of produced rate great biger than composite rate, produced a strong electric field, so when battery absorption layer internal of defects state density for 8x10^12cm-3, battery get maximum conversion efficiency for 20.50%. Change absorption layer doping concentration, when absorption layer of doping concentration for 1x10^12cm-3, battery get maximum conversion efficiency for 19.11%. Change interface layer defects state density, with defects State density of increases, J0 gradually increases, Voc,FF gradually reduced, when interface layer defects State density is 8x10^14cm-3, battery get maximum conversion efficiency for 20.11%. Compared battery after the transmission layer optimization of efficiency and benchmark battery of efficiency, obtained battery in absorption layer thickness for 370nm, absorption layer defects state density for 8x10^10cm-3, interface layer defects state density for 8x10^14cm-3, cell conversion efficiency reaches the maximum value of 25.10%.
Keywords: Solar cell ; Perovskite cell; wxAMPS process simulation; Conversion efficiency
目 录
摘 要 I
ABSTRACT II
第一章 绪论 1
第二章 太阳能电池模拟基础 2
2.1 太阳能电池概述 2
2.2 模拟软件 wxAMPS计算原理 3
2.2.1 漂移-扩散基本方程 3
2.2.2 边界条件 5
2.2.3 数值计算方法 6
2.3 本章小结 7
第三章 钙钛矿电池 8
3.1 钙钛矿型化合物CH3NH3PbX3简介 8
3.2 钙钛矿太阳电池的结构 9
3.3 钙钛矿薄膜的制备方法 9
3.3.1 一步溶液法 10
3.3.2 两步溶液法 10
3.3.3 气相辅助溶液法 10
3.4 模拟计算 10
3.4.1 改变前后电极功函数 10
3.4.2 改变吸收层厚度 13
3.4.3 改变吸收层内部的缺陷态密度 15
3.4.4 改变界面层缺陷态密度 17
3.4.5 改变吸收层的掺杂浓度 18
3.4.6 极限效率 19
3.5 本章小结 20
第四章 总结与展望 24
4.1 甲胺铅碘存在的问题 24
4.1.1甲胺铅碘电池的稳定性 24
4.1.2 甲胺铅碘材料的制备方法 24
4.1.3 甲胺铅碘材料电学性质的争议 24
4.2 总结 24
4.3 展望 25
致谢 26
参考文献 27
第一章 绪论
请支付后下载全文,论文总字数:20373字
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料