AgBiSe2-AgSnSe2固溶体晶体结构和热电性能分析毕业论文
2022-02-28 21:02:56
论文总字数:26882字
摘 要
近年的研究发现I-V-VI2型半导体热电材料具有优异的热电性能,其中以AgSbTe2最为突出(ZT=1.3@720K,AgSbTe2/PbTe合金:ZT =2.2 @800K),但是Te在地壳中的含量极少且较为昂贵。作为同系物,AgBiSe2的组成元素储量更多更廉价,是一种可以考虑的替代材料。AgBiSe2随温度变化有两次结构相变,同时具有很低的晶格热导率,但AgBiSe2本征载流子浓度很低。所以可以经过掺杂或固溶其他元素,在保持低热导率的情况下提高其载流子浓度,从而获得理想的热电性能。本文通过固相法合成n型AgBiSe2,并在Bi位掺杂混合价态的Sn来研究其对AgBiSe2的热电性能的影响。实验发现Sn实际以 2价替代Bi,并将n型AgBiSe2逐步调谐成p型半导体。作为对比实验,固溶AgSnSe2引入Sn与直接掺杂相比并无太大差异。
关键词:I-V-VI2型半导体 AgBi1-xSnxSe2 掺杂和固溶 热电性能
Analysis of AgBi1-xSnxSe2 crystal structure and thermoelectric properties
Abstract
In recent years, studies found that the I-V-VI2 semiconductor thermoelectric material has excellent thermoelectric properties, of which the most outstanding is AgSbTe2 (ZT=1.3@720K, AgSbTe2/PbTe alloy: ZT =2.2 @800K). However, Te is expensive and extremely rare. AgBiSe2,as a homologue, has attracted attention for its earth-abundant constituent elements, which is relatively cheaper. So AgBiSe2 can act as an alternative material. With temperature changes, AgBiSe2 goes through two kings of phase transitions. Although AgBiSe2 owns fairly low lattice thermal conductivity, its intrinsic carrier concentration is low. In order to obtain the ideal thermoelectric properties, we can increase its carrier concentration by doping or solid solution in the case of maintaining low thermal conductivity. In this paper, n-type AgBiSe2 was synthesized by solid-phase method, then we investigated the effect of mixed valence state Sn doping on thermoelectric performance. we found that Sn actually replaced Bi with 2 valence and n-type AgBiSe2 was gradually tuned into p-type semiconductors with the doping content increas. As a comparative experiment, introducing Sn by the solid state diffusion of AgSnSe2 is not much different from that of direct doping.
Key Words: I-V-VI2 Semiconductors; AgBi1-xSnxSnSe2; Doping and Solid solution;Thermoelectric properties
目 录
摘 要 I
Abstract Ⅱ
第一章 绪论 1
1.1 热电材料 1
1.1.1 热电材料研究背景 1
1.1.2 热电转换原理 1
1.2 课题研究背景 4
1.2.1 立方I-V-VI2型半导体 4
1.2.2 不同AgBiSe2掺杂体系 5
1.3 选题思路和研究方法 16
第二章 实验部分 18
2.1 实验目的 18
2.2 实验原料及设备 18
2.3 实验流程 19
2.3.1 AgBiSe2掺杂Sn 19
2.3.2 AgBiSe2固溶AgSnSe2 21
第三章 数据分析 23
3.1 X射线衍射分析 23
3.1.1 AgBi1-xSnxSe2样品X射线衍射数据分析 23
3.1.2 AgBiSe2固溶AgSnSe2样品X射线衍射数据分析 26
3.2 热电性能测试 28
3.2.1 设备和测试原理 28
3.2.2 AgBi1-xSnxSe2样品热电性能数据 28
3.2.3 AgBiSe2固溶AgSnSe2样品热电性能数据 30
第四章 结论与展望 31
参考文献 32
致谢 35
请支付后下载全文,论文总字数:26882字
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料