In和Ga掺杂对AgBiSe2晶体结构和热电性能分析毕业论文
2022-02-28 21:00:43
论文总字数:23060字
摘 要
近期许多研究表明I-V-VI2型化合物由于其固有的低热导性成为了理想的热电候选材料。AgBiSe2作为I-V-VI2型的一个典型例子,是一个依赖于温度变化而产生相变行为的多晶半导体。而AgBiSe2的高温相(Fm3m,γ相)相对于其室温相(Pm31,α相)和中温相(R3m,β相)具有更好的电学性能。本论文试图在Bi位引入In和Ga来抑制高温相向其他相的转变,并优化材料的电导率,使得材料的热电性能得到提高。然而我们通过实验发现,In和Ga并不能成功替代Bi位,导致基体存在多相体系。可能由于Bi空位的形成,导致空穴增多,使得N型AgBiSe2发生向P型的转变。但由于电导率的下降,整体热电性能没有得到提升。
关键词:热电材料 AgBiSe2基 载流子浓度 相变
The Analysis of AgBiSe2 Crystal Structure and Thermoelectric Properties by Indium and Gallium Doping
Abstract
Thermoelectric materials can directly achieve the conversion of electrical energy and thermal energy, which has become a promising functional materials for its unique performance. Recently, many studies have shown that I-V-VI2 compounds have become the ideal thermoelectric candidate materials due to their inherent low thermal conductivity. AgBiSe2, one example of I-V-VI2 compounds, is a polymorphous semiconductor that shows temperature dependent phase transition behavior. The high temperature phase (Fm3m,γ phase) of AgBiSe2 has better electrical properties than its room temperature phase (Pm31,α phase) and medium temperature phase (R3m,β phase).In this paper, we introduce In and Ga in the Bi site to suppress the transition from high temperature to other phases, and optimize the electrical conductivity of the material, which improves the thermoelectric properties of the material. However, we found that In and Ga cannot successfully replace the Bi site, what results in the existence of multi-phase matrix system. It may be the formation of Bi vacancy that causes the increase of hole, which makes N-type AgBiSe2 transform to the P-type. However, the overall thermoelectric properties have not been improved because of the decrease in conductivity.
Key Words: thermoelectric materials; AgBiSe2-based; Carrier concentration; phase transition
目 录
摘 要 I
Abstract II
第一章 绪论 1
1.1热电材料 1
1.1.1热电材料的历史 1
1.1.2热电材料的应用 2
1.2热电效应 2
1.2.1塞贝克效应 3
1.2.2珀尔帖效应 3
1.2.3 ZT值 4
1.3研究现状 5
1.3.1 PbTe体系 5
1.3.2 Bi-Te体系 6
1.3.3 Si-Ge合金 6
1.4选题依据 7
1.4.1 AgBiSe2体系研究现状 7
1.4.2 AgGaSe2和AgInSe2 9
第二章 实验部分 10
2.1实验目的 10
2.2研究内容 10
2.3实验仪器及原料 11
2.4纯相AgGaSe2,AgInSe2和AgBiSe2的制备 12
2.4.1实验流程 12
2.4.2物相分析 13
2.5 AgBi1-xInxSe2热电材料的制备与表征 15
2.5.1 实验流程 15
2.5.2 测试和表征 16
2.6 AgBi1-xGaxSe2热电材料的制备与表征 17
第三章 数据分析 19
3.1 X射线衍射分析 19
3.1.1 AgBiSe2 x%AgInSe2 19
3.1.2 AgBiSe2 x%AgGaSe2 20
3.2 扫描电镜 21
3.3 电导率 26
3.4 塞贝克系数 27
3.5 功率因子 28
第四章 结论 30
参考文献 31
致 谢 33
第一章 绪论
1.1热电材料
随着人类文明快速发展带来的化石能源的日益枯竭,能源问题成为世界各国关注的焦点。2016年,中国消耗的能源总量大约有43.6亿吨标准煤,同比增长了1.4%[1]。
请支付后下载全文,论文总字数:23060字
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料