单分散的SnO2量子点石墨烯复合结构的制备及电化学储能的研究毕业论文
2021-03-15 21:07:08
摘 要
SnO2因其高的理论容量(1494 mAh g-1)而被广泛研究,量子点因其大的比表面积,能提供更多的活性位点,被广泛应用到催化、吸附及能源储存。本课题利用量子点材料的优势,结合SnO2与V2O3的协同效应以及石墨烯柔性特点,可控制备了SnO2量子点/石墨烯、SnO2量子点/V2O3纳米片复合结构。该结构由5 nm左右的SnO2量子点均匀分布在石墨烯、V2O3纳米片表面组成,能够提供大的比表面积、高的反应活性位点以及优异的离子、电子传输,有助于锂离子电池性能的提升。进而组装成锂离子电池,进行电化学性能测试,探索其结构与性能的相关性。本课题在量子点纳米结构的设计方面具有极大的推进作用,并且该策略具有普适性,可应用到多个领域。
本文对锂离子电池负极材料进行了探索,测试并研究了SnO2量子点/石墨烯、SnO2量子点/V2O3纳米片复合材料的电化学性能,并取得了以下成果:
(1)结合低温溶剂热和烧结法成功地制备了SnO2量子点/石墨烯、SnO2量子点/V2O3纳米片复合材料。生长SnO2量子点的方法具有推广性,并将这种方法推广至其它金属氧化物,如Cr2O3、Fe3O4等。
(2)采用XRD、SEM、TEM和BET等测试手段,表征SnO2量子点/石墨烯、SnO2量子点/V2O3纳米片复合材料的物相成分、形貌结构和比表面积等特性。测试结果表明在石墨烯表面,均匀生长着SnO2量子点,尺寸大小在5 nm左右;该材料的比表面积高达148 m2 g-1;所测物相为纯相SnO2。SnO2量子点/V2O3纳米片复合材料的量子点尺寸大小在10 nm以下,均匀生长在V2O3纳米片表面。这种0D / 2D相结合的结构在设计和合成单分散量子点领域具有一定普适性。
(3)SnO2量子点/石墨烯复合材料在电流密度为200 mA g-1时,具有1385 mAh g-1的初始容量,充放电循环120圈之后,仍具有1180 mAh g-1的容量,相对于第二圈,容量保持率高达95%。在2000 mA g-1的大电流密度下,循环1200次,仍具有700 mAh g-1的容量。以上结果表明了SnO2量子点/石墨烯复合材料具有优异的循环性能和高的可逆容量。SnO2量子点/V2O3纳米片复合材料在500 mA g-1的电流密度下,循环200圈之后,仍能保持920 mAh g-1的容量;而且在1000 mA g-1的大电流密度下,循环500圈之后,其容量为724 mAh g-1,具有优异的循环稳定性和倍率性能。
关键词:SnO2量子点,石墨烯,V2O3纳米片,锂离子电池
Abstract
SnO2 has been extensively studied due to its high theoretical capacity, quantum dots are widely used for catalysis, adsorption and energy storage because of their large specific surface area to provide more active sites. In this thesis, we prepared SnO2 quantum dots / graphene, SnO2 quantum dots / V2O3 nanosheets composite structures by using the synergistic effect of SnO2 and V2O3 and the flexibility of graphene. The SnO2 quantum dots (5 nm) were uniformly distributed on the surface of graphene or V2O3 nanosheets, these architectures can provide large specific surface area, more active sites and excellent ion transport, which will be beneficial for lithium ion batteries. And then assembled into a battery, to explore structure and performance relevance. This topic has a great effect on the design of quantum dots nanostructures, and the strategy has wide universality and has potential in many other fields.
In this thesis, the research on the lithium ion anode materials was carried out, and the SnO2 quantum dots / graphene, SnO2 quantum dots / V2O3 nanosheets were fabricated as the lithium ion anode materials, and the following results are achieved:
(1) The SnO2 quantum dots / graphene, SnO2 quantum dots / V2O3 nanosheets composite structures were successfully prepared by solvothermal and sintering. The strategy of growing SnO2 quantum dots was extended to other metals oxides such as Cr2O3, Fe3O4 and the like.
(2) The phase composition, morphology and specific surface area of SnO2 quantum dots / graphene and SnO2 quantum dots / V2O3 nanosheets were characterized by XRD, SEM, TEM and BET. The results show that SnO2 quantum dots grow on the surface of graphene, and the size is about 5 nm, the specific surface area is 148 m2 g-1, SnO2 quantum dots / graphene composite structure is pure phase SnO2. About SnO2 quantum dots / V2O3 composite structure, SnO2 quantum dots (below 10 nm) grow uniformly on the surface of V2O3 nanosheets. This combination of 0D / 2D structures has some universality in the design and synthesis of monodisperse quantum dots.
(3) The initial discharge specific capacity of SnO2 quantum dots / graphene composite structures was 1385 mAh g-1 at 200 mA g-1, and after 120 cycles, a capacity of 1180 mAh g-1 can still be retained, which is 95% of the second-cycle discharge specific capacity. At a high rate of 2000 mA g-1, there is still a capacity of 700 mAh g-1 after 1200 cycles. The electrochemical performance test results show that the SnO2 quantum dot / graphene composite structure has excellent cycling performance and rate capacity. SnO2 quantum dots / V2O3 nanosheets composite structure, can deliver discharge specific capacity of 920 mAh g-1 after 200 cycles at 500 mA g-1. And at a high rate of 1000 mA g-1, the capacity is 724 mAh g-1 after 500 cycles, showing excellent cycle stability and rate capability.
Key words: SnO2 quantum dots, graphene, V2O3 nanosheets, lithium ion batteries
目 录
摘 要 I
Abstract II
第1章 绪论 1
1.1 引言 1
1.2 锂离子电池及其负极材料 1
1.2.1 电池结构及工作原理 1
1.2.2 锂离子电池负极材料的研究进展 2
1.3 二氧化锡纳米材料的发展现状 4
1.4 本文研究内容及意义 7
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料