登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 材料类 > 材料科学与工程 > 正文

镁铈基非晶态合金电化学性能研究任务书

 2020-07-02 22:54:15  

1. 毕业设计(论文)的内容和要求

镁基储氢合金因其具有储氢量大(3.6wt.%,mg2ni理论容量999mah/g,分别是ab5型合金的2.6倍和ab2型合金的1.6倍)、价格低廉、资源丰富,环境友好等优点,并成为国内外新的研究热点之一。

作为mh-ni电池负极材料,镁基非晶态合金拥有良好的应用前景,mg2ni合金电极的理论放电容量达到999 mah/g,是作为二次电池的理想材料,但是mg2ni合金电极电化学动力学性能较差,在强碱溶液中活性物质的腐蚀、氧化以及在充放电过程中粉化都较严重,导致其有效容量低,循环寿命差,而具有非晶结构的mg-ni合金在室温下能够可逆充放电,初始放电容量也较晶态的mg-ni合金高,因而具有广阔的发展前景。

本课题通过合成mg-ce-ni非晶态合金来作为镍氢电池的负极材料,并通过不同的方式对其进行改性处理,以便获得优异的电化学性能。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 参考文献

[1] L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications, Nature, 414 (2001) 353-358. [2] Targets for onboard Hydrogen storage systems for Light Duty Vehicles, US DOE, in. [3] I.P. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: A most promising material, International Journal of Hydrogen Energy, 35 (2010) 5133-5144. [4] W. Grochala, P.P. Edwards, Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen, Chemical Reviews, 104 (2004) 1283-1315. [5] S. Rozenberg, F. Saporiti, J. Lang, F. Audebert, P. Botta, M. Stoica, J. Huot, J. Eckert, Effect of Alloying Elements in Melt Spun Mg-alloys for Hydrogen Storage, Materials Research-Ibero-American Journal of Materials, 19 (2016) 20-26. [6] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: A review, International Journal of Hydrogen Energy, 32 (2007) 1121-1140. [7] H.-J. Lin, J.-J. Tang, Q. Yu, H. Wang, L.-Z. Ouyang, Y.-J. Zhao, J.-W. Liu, W.-H. Wang, M. Zhu, Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump, Nano Energy, 9 (2014) 80-87. [8] T. Liu, C. Wang, Y. Wu, Mg-based nanocomposites with improved hydrogen storage performances, International Journal of Hydrogen Energy, 39 (2014) 14262-14274. [9] M.W. Chen, A brief overview of bulk metallic glasses, NPG Asia Mater., 3 (2011) 82-90. [10] W. Klement Jun, R.H. Willens, P.O.L. Duwez, Non-crystalline Structure in Solidified Gold#8211;Silicon Alloys, Nature, 187 (1960) 869. [11] F.H.M. Spit, J.W. Drijver, S. Radelaar, HYDROGEN SORPTION BY THE METALLIC-GLASS NI64ZR36 AND BY RELATED CRYSTALLINE COMPOUNDS, Scripta Metallurgica, 14 (1980) 1071-1076. [12] T. Spassov, L. Lyubenova, U. Koster, M.D. Baro, Mg-Ni-RE nanocrystalline alloys for hydrogen storage, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 375 (2004) 794-799. [13] Q.A. Zhang, L.X. Zhang, Q.Q. Wang, Crystallization behavior and hydrogen storage kinetics of amorphous Mg11Y2Ni2 alloy, Journal of Alloys and Compounds, 551 (2013) 376-381. [14] H.J. Lin, L.Z. Ouyang, H. Wang, D.Q. Zhao, W.H. Wang, D.L. Sun, M. Zhu, Hydrogen storage properties of Mg-Ce-Ni nanocomposite induced from amorphous precursor with the highest Mg content, International Journal of Hydrogen Energy, 37 (2012) 14329-14335. [15] H.-J. Lin, M. He, S.-P. Pan, L. Gu, H.-W. Li, H. Wang, L.-Z. Ouyang, J.-W. Liu, T.-P. Ge, D.-P. Wang, W.-H. Wang, E. Akiba, M. Zhu, Towards easily tunable hydrogen storage via a hydrogen-induced glass-to-glass transition in Mg-based metallic glasses, Acta Materialia, 120 (2016) 68-74. [16] H.-J. Lin, C. Zhang, H. Wang, L. Ouyang, Y. Zhu, L. Li, W. Wang, M. Zhu, Controlling nanocrystallization and hydrogen storage property of Mg-based amorphous alloy via a gas-solid reaction, Journal of Alloys and Compounds, 685 (2016) 272-277. [17] Y. Wu, J.K. Solberg, V.A. Yartys, The effect of solidification rate on microstructural evolution of a melt-spun Mg-20Ni-8Mm hydrogen storage alloy, Journal of Alloys and Compounds, 446 (2007) 178-182. [18] L.J. Huang, G.Y. Liang, Z.B. Sun, Hydrogen-storage properties of amorphous Mg-Ni-Nd alloys, Journal of Alloys and Compounds, 421 (2006) 279-282. [19] L.-j. Huang, Y.-x. Wang, J.-g. Tang, Y.-c. Zhao, G.-f. Liu, Y. Wang, J.-x. Liu, J.-q. Jiao, W. Wang, B. Jin, L.A. Belfiore, M.J. Kipper, Graphene/silver nanocomposites stabilize Mg-Ni-La electrode alloys and enhance electrochemical performance, Journal of Alloys and Compounds, 694 (2017) 1140-1148. [20] S. Kalinichenka, L. Roentzsch, C. Baehtz, T. Weissgaerber, B. Kieback, Hydrogen desorption properties of melt-spun and hydrogenated Mg-based alloys using in situ synchrotron X-ray diffraction and TGA, Journal of Alloys and Compounds, 509 (2011) S629-S632. [21] S. Kalinichenka, L. Roentzsch, B. Kieback, Structural and hydrogen storage properties of melt-spun Mg-Ni-Y alloys, International Journal of Hydrogen Energy, 34 (2009) 7749-7755. [22] Z. Zhang, O. Elkedim, M. Balcerzak, M. Jurczyk, R. Chassagnon, Effect of Ni content on the structure and hydrogenation property of mechanically alloyed TiMgNix ternary alloys, International Journal of Hydrogen Energy, 42 (2017) 23751-23758. [23] Y. Zhang, B. Li, H. Ren, Z. Yuan, T. Yang, Y. Qi, An investigation on hydrogen storage thermodynamics and kinetics of Nd-Mg-Ni-based alloys synthesized by mechanical milling, International Journal of Hydrogen Energy, 41 (2016) 12205-12213. [24] N.H. Goo, K.S. Lee, The electrochemical hydriding properties of Mg-Ni-Zr amorphous alloy, International Journal of Hydrogen Energy, 27 (2002) 433-438. [25] A. Revesz, A. Kis-Toth, L.K. Varga, E. Schafler, I. Bakonyi, T. Spassov, Hydrogen storage of melt-spun amorphous Mg65Ni20Cu5Y10 alloy deformed by high-pressure torsion, International Journal of Hydrogen Energy, 37 (2012) 5769-5776. [26] K. Edalati, J. Matsuda, M. Arita, T. Daio, E. Akiba, Z. Horita, Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion, Applied Physics Letters, 103 (2013). [27] K. Edalati, J. Matsuda, H. Iwaoka, S. Toh, E. Akiba, Z. Horita, High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure, International Journal of Hydrogen Energy, 38 (2013) 4622-4627. [28] T. Hongo, K. Edalati, M. Arita, J. Matsuda, E. Akiba, Z. Horita, Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion, Acta Materialia, 92 (2015) 46-54.

3. 毕业设计(论文)进程安排

起讫日期

设计(论文)各阶段工作内容

备 注

2017.12.14~2017.12.31

中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献

2018.1.01 ~ 2018.1.12

撰写开题报告及外文文献翻译,开题报告答辩

2018.2.24 ~ 2018.4. 26

通过机械球磨合成不同组分的Mg-Ce-Ni非晶态合金

2018.4.27 ~ 2018.5.10

中期检查与答辩

五一放假

2018.5.11~ 2018.5.30

测试添加不同组分的Mg-Ce-Ni非晶态合金的电化学性能

2018.5.31~ 2018.6.6

撰写毕业论文

2018.6.7~ 2018.6.14

完成毕业论文及答辩

2018.6.14~ 2018.7.5

总结、归档

剩余内容已隐藏,您需要先支付 5元 才能查看该篇文章全部内容!立即支付

微信号:bysjorg

Copyright © 2010-2022 毕业论文网 站点地图