Ti3C2负载纳米Mg的制备及其储氢性能的研究任务书
2020-07-01 21:11:46
1. 毕业设计(论文)的内容和要求
储氢合金具有储氢量大、安全可靠、对环境无污染等优点,并且金属氢化物分解放出来的氢气纯度比较高,可以直接应用于pem燃料电池,因此被公认为是最具有发展前景的储氢方式之一。
众多储氢合金,特别是镁基合金储氢材料,因其储氢密度高、资源丰富、价格低廉等优点得到了越来越多的关注。
但镁基储氢材料的吸放氢动力学性能较差,纳米镁基储氢材料在较高工作温度易发生团聚长大,很难保持稳定纳米结构,循环吸放氢性能较差,仍达不到实际应用的需求。
2. 参考文献
[1] P. E de Jongh. Hydrogen storage: Keeping out the oxygen. Nature Materials. 2011;10:265-266. [2] B Zhao, F Fang, D L Sun, Q A Zhang, S Q Wei, F L Cao, H Sun, L Z Ouyang, M Zhu. Formation of Mg2Ni with enhanced kinetics: Using MgH2 instead of Mg as a starting material. Journal of Solid State Chemistry. 2012;192:210-214. [3] K.-F. Aguey-Zinsou and J.-R. Ares-Fern#225;ndez, Hydrogen in magnesium: new perspectives toward functional stores[J]. Energy Environmental Science. 2010. 3(5): 526-543. [4] R W P Wagemans, J H van Lenthe, P E de Jongh, A J van Dillen, K P de Jong. Hydrogen storage in magnesium clusters: Quantum chemical study. Journal of the American Chemical Society. 2005;127:16675-16680. [5] F Y Cheng, Z L Tao, J Liang, J Chen. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chemical Communications. 2012;48:7334-7343. [6] J J Vajo. Influence of nano-confinement on the thermodynamics and dehydrogenation kinetics of metal hydrides. Current Opinion in Solid State and Materials Science. 2011;15:52-61. [7] T K Nielsen, F Besenbacher, T R Jensen. Nanoconfined hydrides for energy storage. Nanoscale. 2011;3:2086-2098. [8] T. K. Nielsen, K. Manickam, M. Hirscher, et al., Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials[J]. ACS nano. 2009. 3(11): 3521-3528. [9] S. Zhang, A.F. Gross, S.L. Van Atta, et al., The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold[J]. Nanotechnology. 2009. 20(20): 204027. [10] Z. Zhao-Karger, J. Hu, A. Roth, et al., Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold[J]. Chemical Communications. 2010. 46(44): 8353-8355. [11] M. Konarova, A. Tanksale, J.N. Beltramini, et al., Effects of nano-confinement on the hydrogen desorption properties of MgH2[J]. Nano Energy. 2013. 2(1): 98-104. [12] N.S. Norberg, T.S. Arthur, S.J. Fredrick, et al., Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution[J]. Journal of the American Chemical Society. 2011. 133(28): 10679-10681. [13] Y. Liu, J. Zou, X. Zeng, et al., Hydrogen Storage Properties of a Mg-Ni Nanocomposite Coprecipitated from Solution[J]. The Journal of Physical Chemistry C. 2014. 118(32): 18401-18411. [14] W. Liu and K.-F. Aguey-Zinsou, Size effects and hydrogen storage properties of Mg nanoparticles synthesised by an electroless reduction method[J]. Journal of Materials Chemistry A. 2014. 2(25): 9718-9726. [15] K.-J. Jeon, H.R. Moon, A.M. Ruminski, et al., Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts[J]. Nature Materials. 2011. 10(4): 286-290. [16] M. L. Christian, K. F. Aguey-Zinsou. Core#8211;shell strategy leading to high reversible hydrogen storage capacity for NaBH4[J]. ACS nano, 2012, 6(9): 7739-7751. [17] M. Christian, K. F. Aguey-Zinsou. Synthesis of core#8211;shell NaBH 4@ M (M= Co, Cu, Fe, Ni, Sn) nanoparticles leading to various morphologies and hydrogen storage properties[J]. Chemical Communications, 2013, 49(60): 6794-6796. [18] M. Chen, X.-B. Yang, J. Cui, et al., Stability of transition metals on Mg (0001) surfaces and their effects on hydrogen adsorption[J]. International Journal of Hydrogen Energy. 2012. 37(1): 309-317. [19] J. Zou, S. Long, X. Chen, et al., Preparation and hydrogen sorption properties of a Ni decorated Mg based Mg@ Ni nano-composite[J]. International Journal of Hydrogen Energy. 2015. 40(4): 1820-1828. [20] J. Zou, S. Long, L. Zhang, et al., Hydrogen Sorption Behaviors of a Core-Shell Structured Mg@ Fe Composite Powder[J]. Materials Transactions. 2014. 55(8): 1156-1160. [21] J. Cui, H. Wang, J. Liu, et al., Remarkable enhancement in dehydrogenation of MgH2 by a nano-coating of multi-valence Ti-based catalysts[J]. Journal of Materials Chemistry A. 2013. 1(18): 5603-5611. [22] J. Cui, J. Liu, H. Wang, et al., Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core#8211;shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism[J]. Journal of Materials Chemistry A. 2014. 2(25): 9645-9655. [23] W. Liu, E.J. Setijadi and K.-F. Aguey-Zinsou, Tuning the thermodynamic properties of MgH2 at the nanoscale via a catalyst or destabilizing element coating strategy[J]. The Journal of Physical Chemistry C. 2014. 118(48): 27781-27792. [24] A.M. Ruminski, R. Bardhan, A. Brand, et al., Synergistic enhancement of hydrogen storage and air stability via Mg nanocrystal-polymer interfacial interactions[J]. Energy Environmental Science. 2013. 6(11): 3267-3271.
3. 毕业设计(论文)进程安排
2017.12.14~2017.12.31 中国期刊网、维普数据库以及Elsevier数据库等数据库查阅国内外相关文献 2018.1.01 ~ 2018.1.12 撰写开题报告及外文文献翻译,开题报告答辩 2018.2.24 ~ 2018.4. 26 以MXene(Ti3C2)为载体材料,制备纳米Mg基储氢材料 2018.4.27 ~ 2018.5.10 中期检查与答辩 五一放假 2018.5.11~ 2018.5.30 测试制得的纳米Mg基储氢材料的微观形貌和储氢性能,研究其催化机理 2018.5.31~ 2018.6.6 撰写毕业论文 2018.6.7~ 2018.6.14 完成毕业论文及答辩 2018.6.14~ 2018.7.5 总结、归档
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料