CdS-WS2复合纳米晶制备与表征任务书
2020-06-29 20:24:09
1. 毕业设计(论文)的内容和要求
由于化石燃料(如煤炭、石油等)的燃烧给地球带来温室效应、环境污染等全球性问题,构建环境友好的、可再生新能源体系,对于人类实现可持续发展具有重要意义。
h2作为一种清洁、高效的能源,它可以通过纳米晶光催化剂吸收太阳能分解水而获得,从而间接实现对太阳能的利用,这为解决当前面临的能源危机打开了大门。
由于存在载流子易复合、长期催化时稳定性差等问题,单组分光催化剂(如cds、c3n4等)很难高效、稳定地制氢。
2. 参考文献
[1] Gopannagari M., Kim T. K., et al. In situ preparation of few-layered WS2 nanosheets and exfoliation intobilayers on CdS nanorods for ultrafast charge carrier migrations toward enhanced photocatalytic hydrogen production. J Catal., 2017, 351:153-160. [2] He J., Yin S. F., et al. CdS nanorods coupled with WS2 nanosheets for enhanced photocatalytic hydrogen evolution activity. Ind. Eng. Chem. Res. 2016, 55:8327-8333. [3] Chen J. Z., Zhang H., et al. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed., 2015, 54:1210 -1214. [4] Zong X., Li C., et al. Photocatalytic H2 evolution on CdS loaded with WS2 as cocatalyst under visible light irradiation. J. Phys. Chem. C, 2011, 115:12202-12208. [5] Zhong Y. Y., Wu Y. Z., et al. Utilizing photocorrosion-recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution. Appl. Catal. B-Environ. 2016, 199:466-472. [6] Zong X., Li C., et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130:7176-7177. [7] Kumar D. P., Kim T. K., et al. Noble metal-free ultrathin MoS2 nanosheet decorated CdS nanorods as an efficient photocatalyst for spectacular hydrogen evolution under solar light irradiation. J. Mater. Chem. A, 2016, 4:18551-18558. [8] Zhang L. J., Xie T. F., et al. Highly efficient CdS/WO3 photocatalysts: Z scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal., 2014, 4:3724-3729. [9] Zhou P., Yu J.G., Jaroniec M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater., 2014, 26:4920-4935. [10] 李灿. 太阳能光催化制氢研究进展. 化学进展, 2009, 21(11):2285-2302. [11] Huang K., Zhang Q., et al. Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res., 2010, 3:281-287. [12] Huang K., He D. Y., et al. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. J. Phys. D:Appl. Phys., 2008, 41:155417. [13] Yuan H. J., Chen Y. Q., Tang D. S., et al. Hydrothermal synthesis and chromic properties of hexagonal WO3 nanowires. Chin. Phys. B, 2011, 20:036103. [14] Gu Z. J., Yao J. N., et al. Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J. Phys. Chem. B, 2006, 110:23829-23836. [15] Bai S. L., Luo R. X., et al. Low-temperature hydrothermal synthesis of WO3 nanorods and their sensing properties for NO2. J. Mater. Chem., 2012, 22: 12643-12650. [16] Gu Z. J., Yao J. N., et al. Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. Chem. Commun., 2005:3597-3599. [17] 王学文. 半导体异质结构光催化制氢材料的设计与研究进展. 化工新型材料, 2015, 43(5):14-18. [18] 张相辉. 太阳能光催化制氢体系研究进展. 河南大学学报(自然科学版), 2015, 45(3):274-284. [19] Jin J., Yu J. G., et al. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small, 2015, 11(39):5262-5271. [20] Cui X. F., Jiang G. Y., et al. A photonic crystal-based CdS-Au-WO3 heterostructure for efficient visible-light photocatalytic hydrogen and oxygen evolution. RSC Adv., 2014, 4:15689-15694 [21] Yin X. L., Hu J. S., et al. Urchin-like Au@CdS/WO3 micro/nano heterostructure as a visible-light driven photocatalyst for efficient hydrogen generation. Chem. Commun., 2015, 51:13842-13845. [22] Wang X. W., Cheng H. M., et al. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem. Commun., 2009:3452-3454. [23] Spoerke E. D., et al. Nanocrystal layer deposition: surface-mediated templating of cadmium sulfide nanocrystals on zinc oxide architectures. J. Phys. Chem. C, 2009, 113: 16329-16336. [24] Xi G. C., Ye J. H., et al. In situ growth of metal particles on 3D urchin-like WO3 nanostructures. J. Am. Chem. Soc., 2012, 134:6508-6511.
3. 毕业设计(论文)进程安排
2017-12-12~2018-01-14 查阅文献,制定实验方案,完成开题报告 2018-01-14~2018-03-20 制备沿[001]方向生长的六方相CdS单晶纳米线 2018-03-21~2018-04-20 在CdS纳米线上均匀附着一定量WS2纳米点 2018-04-21~2018-05-31 CdS-WS2异质结构纳米晶测试表征 2018-06-01~2018-06-07 毕业论文的撰写 2018-06-08~2018-06-13 完成毕业论文的各项结束工作和毕业答辩
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料