Ce改性Ti-Si-Ox深度选择性脱硫剂的制备与性能任务书
2020-06-11 20:57:20
1. 毕业设计(论文)的内容和要求
1、论文主要内容: (1) 综述深度脱硫的背景意义及国内外研究现状。
(2) 采用溶胶-凝胶法制备ce改性ti-si-ox脱硫吸附剂,主要工作如下:通过优化吸附剂组分配比(ce/ti/si),确定吸附剂最佳制备工艺参数,考察吸附剂粒度、反应温度、流速等因素对选择性吸附脱硫效率的影响,测试硫容,评价吸附剂稳定性及再生性能。
采用xrd分析其物相结构,利用sem表征其表面形貌,采用n2-bet确定催化剂的比表面积、孔容孔径,利用ft-ir研究催化剂上的官能团变化。
2. 参考文献
[1]. Song, C, et al. New design approaches to ultra-clean diesel fuels by deep desulfuri- zation and deep dearomatization. Applied Catalysis B: Environmental, 2003. 41(1#8211;2): 207-238. [2]. Xue, M, et al. Selective adsorption of thiophene and 1-benzothiophene on metalion exchanged zeolites in organic medium. Journal of Colloid and Interface Science, 2005. 285(2): 487-492. [3]. Ma, X. et al. Song. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications. Catalysis Today, 2002. 77(1#8211;2): 107-116. [4]. Xu, K, et al. Single-walled carbon nanotubes supported Ni#8211;Y as catalyst for ultra- deep hydrodesulfurization of gasoline and diesel. Fuel, 2015. 160: 291-296. [5]. Stanislaus, A, A et al. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 2010. 153(1-2): 1-68. [6]. Shen, Y, et al. Selective adsorption for removing sulfur: a potential ultra-deep desulfurization approach of jet fuels. Rsc Advances, 2012. 2(5): 1700-1711. [7]. Shen, Y, et al. A novel potential adsorbent for ultra deepdesulfurization of jet fuels at room temperature. RSC Advances, 2012. 2(15): 6155. [8]. Ninh, T.K.T, et al. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts. Applied Catalysis A: General, 2011. 407(1-2): 29-39. [9]. Baeza, P, et al. Adsorption of thiophene and dibenzothiophene on highly dispersed Cu/ZrO2 adsorbents. Applied Catalysis B: Environmental, 2012. 111-112: 133-140. [10]. Yang, R.T, et al. Yang. Desulfurization of transportation fuels with zeolites under ambient conditions. Science, 2003. 301(5629): 79-81. [11]. Ma, X., et al. Deep desulfurization of gasoline by selective adsorption over solid adsorbents and impact of analytical methods on ppm-level sulfur quantification for fuel cell applications. Applied Catalysis B: Environmental, 2005. 56(1-2): 137-147. [12]. Ma, X, et al. Song. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applica- tions. Catalysis Today, 2002. 77(1#8211;2): 107-116. [13]. Velu, S, et al. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents. Industrial Engineering Chemistry Research, 2003. 42(21): 5293-5304. [14]. Song, C. et al. Mesoporous molecular sieve MCM-41 supported Co#8211;Mo catalyst for hydrodesulfurization of dibenzothiophene in distillate fuels. Applied Catalysis A: General, 1999. 176(1): 1-10. [15]. Furtado, A.M.B, et al. Organoalkoxysilane-grafted silica composites for acidic and basic gas adsorption. Langmuir, 2012. 28(50): 17450-17456. [16]. Belmabkhout, Y, et al. Simultaneous adsorption of H2S and CO2 on triamine- grafted pore-expanded mesoporous MCM-41 silica. Energy Fuels, 2011. 25(3): 1310-1315. [17]. Song, L, et al. Selective functionalization of external and internal surface of MCM-41 for adsorptive desulfurization. Journal of Porous Materials, 2016. 23(5): 1181-1187. [18]. Ren, X, et al. Catalytic adsorptive desulfurization of model diesel fuel using TiO2/ SBA-15 under mild conditions. Vol. 174. 2016. 118-125. [19]. Rivoira, L.P, et al. Sulfur elimination by oxidative desulfurization with titanium modified SBA-16. Catalysis Today, 2016. 271: 102-113. [20]. Ganiyu, S.A, et al. Influence of aluminium impregnation on activated carbon for enhanced desulfurization of DBT at ambient temperature: Role of surface acidity and textural properties. Chemical Engineering Journal, 2016. 303: 489-500. [21]. Xiao, J, et al. Air-promoted adsorptive desulfurization of diesel fuel over Ti-Ce Mixed Metal Oxides. Aiche journal, 2015. 61(2): 631-639. [22]. Xiao, J, et al. Ultra-Deep Adsorptive desulfurization of light-irradiated diesel fuel over supported TiO2#8211;CeO2 adsorbents. Industrial Engineering Chemistry Research, 2013. 52(45): 15746-15755. [23]. Bazyari, A. et al. Microporous titania#8211;silica nanocomposite catalyst-adsorbent for ultra-deep oxidative desulfurization. Applied Catalysis B: Environmental, 2016. 180: 65 -77. [24]. Bazyari, A, et al. Effects of alumina phases as nickel supports on deep reactive adsorption of (4,6-dimethyl) dibenzothiophene: Comparison between γ, δ, and θ alum- ina. Applied Catalysis B: Environmental, 2016. 180: 312-323. [25]. Shen, C, et al. Synthesis of TS-1 on porous glass beads for catalytic oxidative desulfurization. Chemical Engineering Journal, 2015. 259: 552-561. [26]. Babich, I. V, et al. Science and technology of novel processes for deep desulfuriz- ation of oil refinery streams: A review. Fu, 2003. 82(PII S0016-2361(02)00324-16): 607-631. [27]. Selvavathi, V, et al. Adsorptive desulfurization of diesel on activated carbon and nickel supported systems. Catalysis Today, 2009. 141(1-2): 99-102.
3. 毕业设计(论文)进程安排
2016.12.12-2016.12.25: 了解课题背景,查阅文献,熟悉课题及实验设备; 2016.12.26 ~ 2017.1.15:完成外文文献翻译,撰写开题报告,确定实验方案; 2017.3.14 ~ 2017.4.5: 优化制备Ce改性Ti-Si-Ox脱硫吸附剂,测试脱硫性能; 2017.4.6 ~ 2017.4.19: 中期检查与答辩; 2017.4. 20~ 2017.5.10: 考察影响因素,对吸附剂进行表征分析; 2017.5.11 ~ 2017.5.15: 阅读相关文献,结合实验分析手段,探讨脱硫机理; 2017.5.16~ 2017.5.29: 撰写毕业论文; 2017.5.30~ 2017.6.5: 完成毕业论文及答辩; 2017.6.6~ 2017.6.14: 总结、归档。
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料