玻璃 陶瓷体系低温烧结陶瓷介电性能研究任务书
2020-04-25 19:39:07
1. 毕业设计(论文)的内容和要求
随着经济社会的发展,人们对信息的依赖程度越来越深,传递信息的方式和速度也越来越快捷。
近代工业革命使科学迅速发展,1855年麦克斯韦开始研究电磁波到1887年赫兹验证了电磁波的存在再到1896年世界上第一次无线通信的实现[1],人类进入了无线通信的时代。
电磁波按照频率可以分为无线电波、微波、红外线、可见光、紫外线、x射线以及γ射线。
2. 参考文献
[1] 宋德生, 略谈麦克斯韦的电磁场理论, 物理[J], 11(6), p.0-0 [2] 余芬芬, 高温共烧陶瓷(HTCC)用丝网印刷浆料的制备工艺与特性研究[D], 华中师范大学, 2014 [3] 钟慧, 张怀武, 低温共烧结陶瓷(LTCC):特点、应用及问题, 磁性材料及器件[J], 34(4), p.33-35 [4] 井敏, 何洪, 宋秀峰, 直接敷铜陶瓷基板及制备方法, 山东陶瓷[J], 30(6), p.19-24 [5] 商继章, 齐俊杰, 武志胜, 钎焊连接陶瓷表面金属化的研究进展, 焊接[J], 10), p.5-9 [6] 薛生杰, 大功率LED散热用陶瓷金属基板的制备与性能研究[D], 重庆大学, 2014 [7] 王悦辉, 周济, 崔学民等., 低温共烧陶瓷(LTCC)技术在材料学上的进展, 无机材料学报[J], 21(02), p.13-22 [8] Gan H , Jin Y , Miao M , et al. A novel LTCC capacitive accelerometer embedded in LTCC packaging substrate[C] IEEE International Conference on Nano/micro Engineered Molecular Systems. IEEE, 2011. [9] X. Cui, B. Li, J. Shen, et al., The co-fired behaviors between Ag and glass-ceramics materials in LTCC, Journal of Electroceramics[J], 21(1-4), p.541-544 [10] 童志义, 低温共烧陶瓷技术现状与趋势, 电子工业专用设备[J], 37(11), p.1-9 [11] H. Hsing‐I, L. T. Mei, W. C. Liao, et al., Crystallization Behavior and Dielectric Properties of a New High Dielectric Constant Low-Temperature Cofired Ceramics Material Based on Nd2O3TiO2SiO2 GlassCeramics, Journal of the American Ceramic Society[J], 93(6), p.1714-1717 [12] R. R. Tummala, Ceramic and glass‐ceramic packaging in the 1990s, Journal of the American Ceramic Society[J], 74(5), p.895-908 [14] C. S. Chen, C. C. Chou, W. J. Shih, et al., Microwave dielectric properties of glass#8211;ceramic composites for low temperature co-firable ceramics, Materials Chemistry Physics[J], 79(2), p.129-134 [15] S. SAKAMOTO, S. FUJITA, Y. SUGIMOTO, et al., Mechanical strength of low-temperature co-fired ceramic multi-layered substrate, Journal of the Ceramic Society of Japan[J], 125(7), p.569-573 [16] J.-H. Jean and S.-C. Lin, Effects of borosilicate glass on densification and properties of borosilicate glass TiO2 ceramics, Journal of materials research[J], 14(4), p.1359-1363 [17] Y.-R. Wang, S.-F. Wang, C.-K. Wen, et al., Low-fire of (Zr0. 8, Sn0. 2) TiO4 with glass additives, Materials Science[J], 426(1-2), p.143-146 [18] J.-H. Jean and T. Gupta, Liquid-phase sintering in the glass-cordierite system, Journal of Materials Science[J], 27(6), p.1575-1584 [19] C.-C. Cheng, T.-E. Hsieh and I. N. Lin, Microwave dielectric properties of glass-ceramic composites for low temperature co-firable ceramics, Journal of the European Ceramic Society[J], 23(14), p.2553-2558 [20] H. Jantunen, R. Rautioaho, A. Uusimauml;ki, et al., Compositions of MgTiO3 #8211;CaTiO3 ceramic with two borosilicate glasses for LTCC technology, Journal of the European Ceramic Society[J], 20(14), p.2331-2336 [21] 赵建渊, ZnAl2O4系微波介质陶瓷的制备及其微波介电性能的研究[D], 天津大学, 2013 [22] V. M. Ferreira, F. Azough, J. L. Baptista, et al., DiC12: Magnesium titanate microwave dielectric ceramics, Ferroelectrics[J], 133(1), p.127-132 [23] N. M. Alford and S. J. Penn, Sintered alumina with low dielectric loss, Journal of Applied Physics[J], 80(10), p.5895-5898 [24] D. Houivet, J. E. Fallah and J. M. Haussonne, Phases in La2O3 and NiO doped (Zr,Sn)TiO4 microwave dielectric ceramics, Journal of the European Ceramic Society[J], 19(6#8211;7), p.1095-1099 [25] G. K. Choi, J. R. Kim, S. H. Yoon, et al., Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds, Journal of the European Ceramic Society[J], 27(8), p.3063-3067 [26] M. Ma, x. d, e. Kr, et al., Dielectric and Microstructural Study of the SrWO4 , BaWO4 , and CaWO4 Scheelite Ceramics, Journal of the American Ceramic Society[J], 94(8), p.2464-2472 [27] Z. Zhang, H. Zhu, Y. Li, et al., Low temperature sintering and dielectric properties of Ba3(VO4) 2 microwave ceramics using Co2O3 additives, Journal of Materials Science Materials in Electronics[J], 28(1#8211;2), p.1-6 [28] T. Takada, H. Yamamoto and K. Kageyama, Synthesis and Microwave Dielectric Properties of xRe2O3-yB2O3 (Re = La, Nd, Sm, Dy, Ho and Y) Compounds, Japanese Journal of Applied Physics [J], 42(p.6162-6167 [29] J. J. Bian, D. W. Kim and K. S. Hong, Glass-free LTCC microwave dielectric ceramics, Materials Research Bulletin[J], 40(12), p.2120-2129 [30] D. K. Kwon, M. T. Lanagan and T. R. Shrout, Microwave dielectric properties of BaO#8211;TeO2 binary compounds, Materials Letters[J], 61(8), p.1827-1831 [31] R. C. Pullar, C. Lai, F. Azough, et al., Novel microwave dielectric LTCCs based uponV2O5 doped M2 Cu2Nb2O8 compounds (M 2 =Zn, Co, Ni, Mg and Ca), Journal of the European Ceramic Societ[J], 26(10), p.1943-1946 [32] G. K. Choi, S. Y. Cho, J. S. An, et al., Microwave dielectric properties and sintering behaviors of scheelite compound CaMoO4, Journal of the European Ceramic Society[J], 26(10), p.2011-2015 [33] K. B. Shim, N. T. Cho and S. W. Lee, Silver diffusion and microstructure in LTCC multilayer couplers for high frequency applications, Journal of Materials Science[J], 35(4), p.813-820 [34] J. H. Jean and C. R. Chang, Interfacial Reaction Kinetics between Silver and Ceramic‐Filled Glass Substrate, Journal of the American Ceramic Society[J], 87(7), p.1287-1293
3. 毕业设计(论文)进程安排
2019.1.5-2019.1.22 查阅文献资料,了解研究背景实验内容 2019.1.23-2019.2.20 外文翻译 2019.2.21-2019.3.7 撰写开题报告、准备开题 2019.3.8-2019.4.15确定实验方案、准备器材和原料,用固相法制备低温共烧陶瓷,进行介电性能测试和分析表征 2019.4.16-2019.4.30 整理数据、阶段小结、期中交流 2019.5.4-2019.5.15 补充实验并进行其他性能测试和分析表征 2019.5.15-2019.5.24 实验数据整理和总结 2019.5.25-2019.6.6 撰写和修改论文 2019.6.7-2019.6.14 准备答辩和完成