金属有机框架化合物 (MOF) 的衍生物在能源存储中的应用任务书
2020-06-28 20:22:22
1. 毕业设计(论文)的内容和要求
1. 内容:金属有机框架化合物(mof)是由有机配体和金属离子或团簇通过配位键自组装形成的具有分子内孔隙的有机-无机杂化材料。
由于其可调控的形貌、功能和孔径,以及大的比表面积在许多领域都具有广泛的应用,比如气体存储、气体分离、催化、传感等等。
该课题研究集中于一种zif类型mof:zif-67。
2. 参考文献
1. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319 (5865), 939-943. 2. Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W., Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. J Am Chem Soc 2015, 137 (16), 5590-5595. 3. Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W., Complex Hollow Nanostructures: Synthesis and Energy-Related Applications. Adv Mater 2017, 29 (15). 4. Hannan, M. A.; Lipu, M. S. H.; Hussain, A.; Mohamed, A., A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew Sust Energ Rev 2017, 78, 834-854. 5. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q., Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. Adv Mater 2017, 29 (20). 6. Huang, M.; Mi, K.; Zhang, J. H.; Liu, H. L.; Yu, T. T.; Yuan, A. H.; Kong, Q. H.; Xiong, S. L., MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J Mater Chem A 2017, 5 (1), 266-274. 1. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M., High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319 (5865), 939-943. 2. Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W., Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. J Am Chem Soc 2015, 137 (16), 5590-5595. 3. Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W., Complex Hollow Nanostructures: Synthesis and Energy-Related Applications. Adv Mater 2017, 29 (15). 4. Hannan, M. A.; Lipu, M. S. H.; Hussain, A.; Mohamed, A., A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew Sust Energ Rev 2017, 78, 834-854. 5. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q., Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. Adv Mater 2017, 29 (20). 6. Huang, M.; Mi, K.; Zhang, J. H.; Liu, H. L.; Yu, T. T.; Yuan, A. H.; Kong, Q. H.; Xiong, S. L., MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J Mater Chem A 2017, 5 (1), 266-274. 7. Chen, H. Y.; Wang, N.; Di, J. C.; Zhao, Y.; Song, Y. L.; Jiang, L., Nanowire-in-Microtube Structured Core/Shell Fibers via Multifluidic Coaxial Electrospinning. Langmuir 2010, 26 (13), 11291-11296. 8. Han, T.; Reneker, D. H.; Yarin, A. L., Buckling of jets in electrospinning. Polymer 2007, 48 (20), 6064-6076. 9. Joseph, J.; Nair, S. V.; Menon, D., Integrating Substrate less Electrospinning with Textile Technology for Creating Biodegradable Three-Dimensional Structures. Nano Lett 2015, 15 (8), 5420-5426. 10. Liu, Z.; Guo, R. T.; Meng, J. S.; Liu, X.; Wang, X. P.; Li, Q.; Mai, L. Q., Facile electrospinning formation of carbon-confined metal oxide cube-in-tube nanostructures for stable lithium storage. Chem Commun 2017, 53 (59), 8284-8287. 11. Niu, H. T.; Lin, T., Fiber Generators in Needleless Electrospinning. J Nanomater 2012. 12. Shin, J.; Choi, S. J.; Lee, I.; Youn, D. Y.; Park, C. O.; Lee, J. H.; Tuller, H. L.; Kim, I. D., Thin-Wall Assembled SnO2 Fibers Functionalized by Catalytic Pt Nanoparticles and their Superior Exhaled-Breath-Sensing Properties for the Diagnosis of Diabetes. Adv Funct Mater 2013, 23 (19), 2357-2367. 13. Sun, Z. C.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A., Compound core-shell polymer nanofibers by co-electrospinning. Adv Mater 2003, 15 (22), 1929- . 14. Yang, D. Y.; Lu, B.; Zhao, Y.; Jiang, X. Y., Fabrication of aligned fibirous arrays by magnetic electrospinning. Adv Mater 2007, 19 (21), 3702- .
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 12月25日 ~1月25日 确定课题,布置任务,阅读文献资料,并进一步检索文献。
1月26日 ~2月27日 翻译英文文献,完成开题报告;制订实验计划,了解实验仪器设备及实验方法。
#160; 1月26日 ~ 2月27日 修改开题报告及英文文献翻译,进行开题,根据意见完善实验计划。
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料