钙钛矿太阳能电池制备及界面修饰研究任务书
2020-06-28 20:21:25
1. 毕业设计(论文)的内容和要求
毕业设计内容: 本设计以制备高效率钙钛矿型太阳能电池为目的,整体研究过程简单易懂,所设计的器件与所用材料恰当合理,无需花费过多的人力财力便可达到预期所要求界面修饰功能的实现,也符合课题研究的意义。
设计的理论方案、分析方法及特色与创新点等对国内钙钛矿太阳能电池稳定性和能量转换效率的研究与普及有一定的参考意义。
太阳能电池也可以作为照明器件的发展对象,为中国照明市场技术含量的缺乏进行一定的弥补,实现经济收益,形成商业价值。
2. 参考文献
[1] Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012, 2, 591. [2] Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013, 501, 395. [3] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photon., 2014, 8, 506. [4] Yang W S, Noh J H, Jeon N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348, 1234. [5] Wei C, Yong Z W, You F Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers [J]. Science, 2015, 350, 944. [6] Liu Z, Zhang M, Xu X, et al. p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells[J]. Dalton Trans., 2015, 44, 3967. [7] Wojciechowski K, Stranks S D, Abate A, et al. Heterojunction modification for highly efficient organic#8211;inorganic perovskite solar cells[J]. ACS Nano, 2014, 8, 12701. [8] Zuo L, Gu Z, Ye T, et al. Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer[J]. J. Am. Chem. Soc., 2015, 137, 2674. [9] Yang G, Wang C, Lei H, et al. Interface engineering in planar perovskite solar cells: energy level alignment, perovskite morphology control and high performance achievement[J]. J. Mater. Chem. A, 2017, 5, 1658. [10] Song S, Kang G, Pyeon L, et al. Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η= 21.1%)[J]. ACS Energy Lett., 2017, 2, 2667.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2017.12.20~12.22 完成选题 下达任务书 12.22~2018.01.12 布置设计任务、学习基本知识。
查阅文献、翻译文献、撰写开题报告 完成开题 01.13~02.29 继续深入阅读重点文献,完善毕设完成的步骤 03.1~03.31 完成材料的合成与表征,器件制备 04.1~04.30 材料、工艺与器件性能分析 中期检查 05.1~05.15 撰写毕业论文初稿 05.16~05.30 完善毕业论文,形成终稿 06.5之前 提交所有毕业设计正式材料电子版与打印版 06.5~06.14 准备答辩 答辩
您可能感兴趣的文章
- 改善锂离子电池中硅基负极存储性能的策略研究外文翻译资料
- 通过添加压电材料BaTiO3提高大功率锂离子电池的微米级SiO @ C/CNTs负极的电化学性能外文翻译资料
- Pd和GDC共浸渍的LSCM阴极在固体氧化物电解池高温电解CO2中的应用外文翻译资料
- 利用同步回旋加速器粉末衍射的方法来研究在有其他物相的情况下C4AF的水化作用外文翻译资料
- 外国循环流化床锅炉发展现状外文翻译资料
- 含石蜡基复合材料的多壁碳纳米管的热性能外文翻译资料
- 矸石电厂炉渣机制砂的应用研究外文翻译资料
- 机动车螺旋弹簧的失效分析外文翻译资料
- 从废阴极射线管和锗尾矿制备高强度玻璃泡沫陶瓷外文翻译资料
- 作为导热液体的液态金属在太阳能储热中的应用外文翻译资料