基于NSGA-II的醋酸甲酯水解工艺过程优化设计任务书
2020-06-30 21:11:57
1. 毕业设计(论文)的内容和要求
学生针对选题探讨课题研究的背景及其意义,了解、熟悉醋酸甲酯水解工艺研究现状,并在基础上利用Aspen Plus 流程模拟软件构建醋酸甲酯水解稳态模型,针对现阶段水解工艺参数进行年总成本最小化的工艺优化设计。
学生应该从以下方向展开研究学习: (1)课题研究背景、意义 (2)醋酸甲酯水解工艺研究现状 (3)醋酸甲酯水解工艺稳态流程模拟 (4)基于年总成本的最优化分析,构建数学模型 (5)利用NSGA-II算法进行醋酸甲酯水解工艺多变量优化设计
2. 参考文献
[1] 管国锋,董金善和薄翠梅等. 化工多学科工程设计与实例[M].北京:化学工业出版社,2016. [2] 王振新. 精对苯二甲酸装置乙酸甲酯回收与利用[J]. 江苏化工, 2004, 32(1):43~45. [3] 郑学明, 蔡峻英等,催化精馏与醋酸甲酷的水解[J]. 维纶通讯, 2002, 22(4): 5~7. [4] 邱挺,吴燕翔,王良恩,赵之山.乙酸甲酯与甲醇共沸物催化精馏水解工艺[J].化工进展,2007,26(04):584~589. [5] 潘远波,李维新,沈品德,万辉,韩明娟,管国锋. 精对苯二甲酸生产中副产物醋酸甲酯催化精馏水解研究[J]. 化学反应工程与工艺,2009,25(02):132~136. [6] Hsieh, Yih-Huang, Weinberg Noham; Wolfe Saul. The neutral hydrolysis of methyl acetate-Part 1. Kinetic experiments[J]. Canadian Journal of Chemistry,2009,87(4):539~543. [7] Lee, Hao-Yeh, Hsiao-Ping. et al.Design and control of a heat-integrated reactive distillation system for the hydrolysis of methyl acetate[J]. Industrial and Engineering Chemistry Research, 2010, 49(16): 7398~7411. [8] GaoXin, LiXingang, LiHong. Hydrolysis of methyl acetate via catalytic distillation: Simulation and design of new technological process[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(12):1267~1276. [9] Zhao Su-ying, Zhou Jin-yin and Wang Liang-En. Coupled reaction/distillation process for hydrolysis of methyl acetate [J]. Chinese Journal of Chemical Engineering,2010,18(05):755~760. [10] 陈锦洲. 带侧采的醋酸甲酯催化精馏水解新工艺[J].化学工程与装备,2011,(07):31~34. [11] 邵锋. 基于gPROMS平台的反应精馏过程模拟及醋酸甲酯水解过程分析[D].华东理工大学,2013. [12] Li Jun, Wang Ru-Jun and Sun Lan-Yi.Simulation study of different pressure thermally coupled reactive distillation column for hydrolysis of methyl acetate[J]. Journal of China University of Petroleum,2014,38(01):155-160. [13] 童立威. 基于辅助化学反应直接强化的乙酸甲酯水解反应精馏过程基础研究[D].上海:华东理工大学,2014. [14] Bessling B, Louml;ning J M, Ohligschlauml;ger A, Schembecker G, Sundmacher K. Investigations onthe synthesis of methyl acetate in a heterogeneous reactive distillation process[J]. Chemical Engineering Technology, 1998, 21(5): 393~400. [15] Huss R S, Chen F R, Malone M F, Doherty M F. Reactive distillation for methyl acetate production[J]. Computers and Chemical Engineering, 2003,27(12): 1855~1866. [16] Tung S T, Yu C C. Effects of relative volatility ranking to the design of reactive distillation[J]. AIChE Journal, 2007, 53(5):1278~1297. [17] Luyben W L, Yu C C. Reactive distillation design and control[M]. Hoboken: John Wiley and Sons, 2008. [18] Luyben W L. Effect of kinetic and design parameters on ternary reactive distillation columns[J]. Industrial and Engineering Chemistry Research, 2007, 46(21): 6944~6952. [19] Thotla S, Mahajani S M. Conceptual design of reactive distillation for selectivity improvement in multiple reactant systems[J]. Chemical Engineering Research and Design, 2009, 87 (1): 61~82. [20] Tang Y T, Chen Y W, Huang H P, Yu C C, Hung S B, Lee M J. Design of Reactive Distillations for Acetic Acid Esterification[J]. AIChE Journal, 2005,51(6): 1683~1699. [21] Lai I K, Hung S B, Hung W J, Yu C C, Lee M J, Huang H P. Design and control of reactive distillation for ethyl and isopropyl acetates production with azeotropic feeds[J]. Chemical Engineering Science, 2007, 62 (3): 878~ 898. [22] Luyben W L, Pszalgowski K M, Schaefer M R, Siddons C. Design and control of conventional and reactive distillation processes for the production of butyl acetate[J]. Industrial and Engineering Chemistry Research, 2004, 43(25): 8014~8025. [23] Al-Arfaj M A, Luyben W L. Design and control of an olefin metathesis reactive distillation column[J]. Chemical Engineering Science, 2002, 57 (5): 715~733. [24] Hung S B, Lai I K, Huang H P, Lee M J, Yu C C. Reactive distillation for two-stage reaction systems: Adipic acid and glutaric acid esterifications[J]. Industrial and Engineering Chemistry Research, 2008, 47(9):3076~3087. [25] Wang S J, Lee H Y, Ho J H, Yu C C, Huang H P, Lee M J. Plantwide design of ideal reactive distillation processes with thermal coupling[J]. Industrial and Engineering Chemistry Research, 2010, 49(7): 3262~3274. [26] Wang S J, Huang H P, Yu C C. Design and control of a heat-integrated reactive distillation process to produce methanol and n-butyl acetate[J]. Industrial and Engineering Chemistry Research, 2011, 50(3): 1321~1329. [27] KaymakD B, Luyben W L. Design of distillation columns with external side reactors[J]. Industrial and Engineering Chemistry Research, 2004, 43(25): 8049~8056. [28] Luyben W L. Design and control of the cumene process[J]. Industrial and Engineering Chemistry Research, 2010, 49(2): 719~734. [29] Luyben W L. Design and control of an auto-refrigerated alkylation process[J]. Industrial and Engineering Chemistry Research, 2009, 48(24): 11081~11093. [30] Jimenez, L., Garvin, A., Costa-Lopez, J. The production of butyl acetate and methanol via reactive and extractive distillation I. Chemical equilibrium, kinetics, and mass-transfer issues[J]. Industrial Engineering Chemistry Research, 2002, 41(26), 6663~6669. [31] Suresh Babu K, Pavan Kumar M V, Kaisth N. Controllable optimized designs of an ideal reactive distillation system using genetic algorithm[J]. Chemical Engineering Science, 2009, 64 (23): 4929~ 4942. [32] Srinivas, N., Deb, K. A robust evolutionary framework for multi-objective optimization [C]. Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation ,2008:633~640. [33] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6: 182~197. [34] Bhaskar, V., Gupta, S.K., Ray, A.K. Applications of multi-objective optimization in chemical engineering[J]. Reviews in Chemical Engineering, 2002, 16, 1~54. [35] Bhaskar, V., Gupta, S.K., Ray, A.K. Multi-objective optimization of an industrial wiped film PET reactor[J]. AIChE Journal, 2002, 46, 1046~1058. [36] 俞辉,王超,李丽娟,张湜. 基于非支配排序遗传算法的乙苯脱氢工艺条件优化[J]. 化工学报,2012,63(09):2771~2776. [37] Montazer-Rahmati MM, Binaee R. Multi-objective optimization of an industrial hydrogen plant consisting of a CO2 absorber using DGA and a methanator[J]. Computer and Chemical Engineering, 2010, 34:1813~1821. [38] Leboreiro J, Acevedo J. Processes synthesis and design of distillation sequences using modular simulators: a genetic algorithm framework[J]. Computer and Chemical Engineering, 2004,28(8):1223~1236. [39] Hakanen J, Miettinen K, Ma kela MM, Manninen J. On interactive multi-objective optimization with NIMBUS_ in chemical process design[J]. J Multi-Criteria Decis Anal, 2005, 13:125~134. [40] Hakanen J, Hakala J, Manninen J. An integrated multi-objective design tool for process design[J]. Applied Thermal Engineering, 2006,26(13):1393~1399. [41] Jang W-H, Hahn J, Hall KR. Genetic/quadratic search algorithm for plant economic optimizations using a process simulator[J]. Computer and Chemical Engineering, 2005,30(2):285~294. [42] Kim H, Kim IH, Yoon ES. Multi-objective design of calorific value adjustment process using process simulators[J]. Industrial and Engineering Chemical Research, 2010,49(6):2841~2848. [43] Eslick JC, Miller DC. A multi-objective analysis for the retrofit of a pulverized coal power plant with a CO2 capture and compression process[J]. Computer and Chemical Engineering, 2011,35: 1488~1500. [44] Alireza Behroozsarand, Sirous Shafiei. Multi-objective optimization of reactive distillation with thermal coupling using non-dominated sorting genetic algorithm-II[J]. Journal of Natural Gas and Engineering, 2011,3(2):365~374. [45] Dongliang Wang, Xiao Feng. Simulation and multi-objective optimization of an integrated process for hydrogen production from refinery off-gas[J]. International Journal of Hydrogen Energy, 2013, 38(29): 12968~12976. [46] 李军,王纯正,马占华,孙兰义.基于Aspen Plus和NSGA-Ⅱ的隔壁塔多目标优化研究[J].高校化学工程学报,2015,29(02):400~406. [47] 黄小侨,李娜,李军,宋丽娟,张玉贞,段永生.基于遗传算法的常减压装置多目标优化[J].中国石油大学学报(自然科学版),2016,40(02):163~168. [48] Stichlmair J, Frey T. Mixed-Integer nonlinear programming optimization of reactive distillation processes[J]. Industrial and Engineering Chemistry Research, 2001, 40(25): 5978~5982. [49] Jignesh Gangadwala, Achim Kienle. MINLP optimization of butyl acetate synthesis[J]. Chemical Engineering and Processing, 2007,46(2): 107~118. [50] 雷杨,张冰剑,陈清林. 基于MINLP的精馏塔进料板位置优化[J]. 化工进展,2011,(S2):80~84. [51] Edwin Zondervan, Mayank Shah. Optimal design of a reactive distillation column[J]. Chemical Engineering Transactions, 2011, 24: 295~300. [52] Al-Arfaj, M. A. and Luyben W. L.. Comparison of Alternative Control Structures for an Ideal Two-product Reactive Distillation Column[J]. Ind. Eng. Chem. Res., 2000,39(9): 3298~3307. [53] Al-Arfaj, M. A. and Luyben W. L.. Comparative Control Study of Ideal and Methyl Acetate Reactive Distillation[J]. Chem. Eng. Sci., 2002, 57(24): 5039~5050. [54] Kaymak, D. B. and Luyben W. L.. Quantitative Comparison of Reactive Distillation with Conventional Multiunit Reactor/Column/Recycle Systems for Different Chemical Equilibrium Constants[J]. Ind. Eng. Chem. Res., 2004,43(10):2493~2507. [55] Kaymak, D. B. and Luyben W. L.. Comparison of Two Types of Two-temperature Control Structures for Reactive Distillation Columns[J]. Ind. Eng. Chem. Res.,2005, 44(13):4625~4640. [56] Sneesby, M. G., Tade M. O., and Smith T. N.. Two-point Control of a Reactive Distillation Column for Composition and Conversion[J]. Journal of Process Control, 1999, 9(1):19~31. [57] Engell, S. and Fernholz G.. Control of a Reactive Separation Process[J]. Chem. Eng. Process., 2003, 42(3):201~210. [58] Hung, S. B., Lee M. J., Tang Y. T., Chen Y. W., and Yu C. C.. Control of Different Reactive Distillation Configurations[J]. AIChE J., 2006, 52(4):1423~1440. [59] Monroy L. R. and AlvarezR. J. Balanced Control Scheme for Reactor/Separator Processes with Material Recycle [J]. Industrial and Engineering Chemistry Research, 2004,43(8):1853~1862. [60] Al-Arfaj, M. A. and Luyben W. L.. Plant-wide Control for TAME Production Using Reactive Distillation[J]. AIChE J., 2004, 50(7):1462~1473. [61] Lin, Y. D., Chen J. H., Huang H. P.and Yu C. C.. Process Alternatives for Methyl Acetate Conversion Using Reactive Distillation. 1. Hydrolysis[J]. Chem. Eng. Sci.,2008,63(6):1668~1682. [62] Huang S. B., and Yu C. C.. Control of plant-wide reactive distillation processes: Hydrolysis, transesterification and two-stage esterification[J]. Journal of the Taiwan Institute of Chemical Engineers,2010,41(4):382~402. [63] Rahul Jagtap, Ashok S Pathak, Nitin Kaistha. Economic Plant-wide Control of the Ethyl Benzene Process[J]. AIChE. Journal, 2013, 59(6): 1996~2014. [64] 周娇,汤吉海,乔旭等. 背包式反应器与精馏塔耦合合成醋酸甲酯的模拟[J].南京工业大学学报:自然科学版, 2006, 28(5):51~56. [65] Tong Liwei, Chen Lifang, Qi, Zhiwen, et al. Simulation study on a reactive distillation process of methyl acetate hydrolysis intensified by reaction of methanol dehydration [J]. Chemical Engineering and Processing: Process Intensification,, 2013, 67: 111~119. [66] 张月明.隔壁精馏塔技术应用于反应精馏及空气分离的研究[D]. 青岛: 中国石油大学, 2010. [67] ZHAO L, YI C H, YANG B L. Design, optimization, and control of reactive distillation column for the synthesis of tert-amyl ethyl ether [J]. Chemical Engineering Research and Design, 2013, 91(5): 819~830. [68] MAHDI S. Implementation of a steady-state inversely controlled process model for integrated design and control of an ETBE reactive distillation [J]. Chemical Engineering Science, 2013, 92: 21~39. [69] SURAJ V, G.P.RANGAIAH. Integrated Framework Incorporating Optimization for Plant-Wide Control of Industrial Processes [J]. Industrial and Engineering Chemistry Research, 2011, 50(13): 8122~8137. [70] LUYBEN WL. Distillation Design and Control Using Aspen Simulation[M]. New Jersey: John Wiley and Sons, Inc,2006:97~101. [71] 谢文君.多目标遗传算法在煤气化过程中的应用[D].西安:西安科技大学,2013:33~35. [72] 张永娇.基于进化算法的多目标优化问题研究[D].沈阳:沈阳工业大学,2014:19~21. [73] 耿大钊,陈曦,邵之江,钱积新.MAP工具箱:Matlab与Aspen Plus的高级接口[J].中国科学技术大学学报,2005,35:1~7. [74] 耿大钊,陈曦,邵之江,钱积新. 基于COM技术的MATLAB与Aspen Plus接口及高级应用[J]. 化工自动化及仪表,2006,33(3):30~34. [75] 耿大钊. 乙烯分离过程的模拟与优化[D].杭州:浙江大学,2006:55~68. [76] Steimel J., Harrmann M., Schembecker G., Engell. S.. Model-based conceptual design and optimization tool support for the early stage development of chemical processes under uncertainty [J]. Computers and Chemical Engineering, 2013,59:63-73.
3. 毕业设计(论文)进程安排
(1)开题报告撰写 (2)外文文献翻译 (3)论文设计思路 (4)Aspen Plus稳态模拟流程搭建 (5)论文初稿 (6)论文终稿