高雷诺数下粗糙圆柱涡激振动数值模拟研究毕业论文
2021-11-14 20:36:41
论文总字数:30401字
摘 要
对于海洋工程中的细长体结构物(如立管、钻管等)而言,涡激振动是导致其发生破坏的主要原因之一。海洋生物的附着以及细小沉积物的堆积会改变细长体结构物的表面粗糙度,可能会导致涡激振动的加剧,造成结构物的提前破坏。为研究表面粗糙度对涡激振动的影响,本文利用ANSYS/Fluent软件对二维光滑/粗糙圆柱的绕流及涡激振动进行了数值模拟,主要研究内容及结论如下:
对光滑圆柱绕流,对雷诺数为20000的情况进行了数值模拟,并对升阻力系数、涡量和压强分布进行分析,发现升阻力系数的周期性关系,观察到流场的发展规律,并得到为流动分离点。
对粗糙圆柱绕流,针对四种不同表面粗糙度情况进行了数值模拟,发现随着粗糙度增大,阻力系数的稳定性提高,升力系数与阻力系数的频率均增大,平均阻力系数和均方根升力系数呈明显的下降趋势,流动分离点向圆柱后方推移,且靠近圆柱后方的尾涡有较明显的拉长现象。
对光滑圆柱涡激振动,在振动响应曲线上观察到了初始分支和下端分支。为振动的锁定区,在此区间内,结构振动频率和涡脱落频率与结构固有频率接近,结构发生共振,斯特劳哈尔数在锁定区表现为大幅度波动,且靠近圆柱后方的尾涡脱落由2S转变为2P模式。在时,无量纲振幅达到最大值0.60。平均阻力系数对约化速度的响应曲线与无量纲振幅基本一致,但均方根升力系数则先于二者对约化速度的增大产生响应。由此推断升力的变化引起振幅和阻力的变化。
对粗糙圆柱涡激振动,针对三个不同表面粗糙度情况进行了数值模拟,发现随着粗糙度增大,振幅响应曲线进入锁定区推迟,且离开锁定区提前,从而使锁定区间缩短,且粗糙度导致振幅和升阻力减小,振动频率上升,稳定性下降。随着粗糙度增大,斯特劳哈尔数对约化速度响应曲线的波动幅度减小。整体而言,粗糙度的存在对振动具有抑制作用,使振动的稳定性降低。
关键词:涡激振动;圆柱绕流;粗糙度;高雷诺数;数值模拟
Abstract
Vortex-induced vibration is one of the main reasons for the destruction of marine engineering structures (like risers and drill pipes).The attachment of marine organisms and the accumulation of tiny sediments will change the surface roughness of the slender body structure, which may lead to the intensification of VIV and the premature destruction of the structure. In this paper, the two-dimensional flow around a smooth/rough circular cylinder and VIV of a smooth/rough circular cylinder is studied by a numerical simulation through ANSYS/Fluent program. The main contents and conclusions are as follows:
The flow around a smooth circular cylinder is simulated numerically with , and the lift coefficient, drag coefficient, pressure coefficient and vorticity are analyzed. The periodicity relation between lift coefficient and drag coefficient is found, the rules of development of the flow field is observed, and it has been found that is the separation point of boundary layer.
For a rough cylinder, four kinds of surface roughness are simulated. It is found that with the increase of roughness, the stability of drag coefficient increases, the frequency of lift coefficient and drag coefficient increases, the average drag coefficient and root-mean-squared lift coefficient show a significant downward trend, the flow separation point moves towards the rear of the cylinder, and the wake vortex near the rear of the cylinder has a more obvious elongated phenomenon.
In the research of VIV for a smooth circular cylinder, the initial branch and lower branch have been observed on the vibration response curve. is the lock-in area, in which the vibration frequency and vortex shedding frequency of the structure are close to the natural frequency of the structure. The Strouhal number fluctuates greatly in the lock-in area and the wake vortex shedding near the rear of the cylinder changes from 2S mode to 2P mode. When , the dimensionless vibration amplitude reaches a maximum of 0.60. The response curve of mean drag coefficient to reduced velocity is basically consistent with dimensionless amplitude, but the root-mean-squared lift coefficient responds to the increase of reduced velocity earlier than drag coefficient and vibration amplitude. It is inferred that the change of lift force causes the change of amplitude and drag force.
VIV of a rough cylinder is numerically simulated for three different surface roughness conditions. In this part, delay of entry into the lock-in area and advance of exit from the lock-in area have been observed with the increase of roughness, which caused the shortening of the lock-in area. It has also been found that the increase of roughness causes the decrease of vibration amplitude, lift coefficient and drag coefficient, but increase of vibration frequency and instability. To sum up, the existence of roughness inhibits vibration and decreases the stability of vibration.
Key words: VIV;flow around circular cylinder;roughness;high Reynolds number;numerical simulation
目 录
第1章 绪论 1
1.1 研究背景和意义 1
1.2 国内外研究进展 1
1.2.1 光滑圆柱振动的研究 1
1.2.2 粗糙圆柱的研究 2
1.2.3 高雷诺数的研究 3
1.3 本文的研究内容 4
第2章 数值模拟方法概述 5
2.1 流体力学基本方程 5
2.1.1 控制方程 5
2.1.2 动力学方程 5
2.2 湍流模型 7
2.2.1 湍流研究方法 7
2.2.2 DES模型 7
2.3 动网格技术 9
2.3.1 动网格更新方法 9
2.3.2 流固耦合计算过程 10
2.4本章小结 10
第3章 光滑圆柱绕流的数值模拟 11
3.1 计算模型 12
3.1.1 建模过程 12
3.1.2 网格独立性验证 13
3.2 数值模拟结果分析 13
3.2.1 升力系数与阻力系数 13
3.2.2 涡量场 16
3.2.3 压强分布 17
3.3 本章小结 18
第4章 粗糙圆柱绕流的数值模拟 19
4.1 计算模型 19
4.2 数值模拟结果分析 20
4.2.1 升力系数与阻力系数 20
4.2.2 涡量场 23
4.2.3 压强分布 24
4.3 本章小结 24
第5章 光滑圆柱涡激振动的数值模拟 26
5.1 计算模型 26
5.1.1 物理模型 26
5.1.2 动网格设置 27
5.2 数值模拟结果分析 28
5.2.1 响应幅值及锁定 28
5.2.2 升阻力系数及频率 29
5.2.3 斯特劳哈尔数 31
5.2.4 涡量场 32
5.3 本章小结 33
第6章 粗糙圆柱涡激振动的数值模拟 34
6.1 计算模型 34
6.2 数值模拟结果分析 35
6.2.1 响应幅值及频率 35
6.2.2 升阻力系数及频率 37
6.2.3 斯特劳哈尔数 41
6.2.4 涡量场 42
6.3 本章小结 43
第7章 结论 44
7.1 总结 44
7.2 创新点 45
7.3 研究展望 45
参考文献 46
致谢 48
绪论
研究背景和意义
随着人们对海洋资源的需求日益增长,关于海洋结构物涡激振动(VIV)的研究越来越受到重视。如果水流冲击圆柱结构,则由于结构两侧交替产生涡脱落,会在圆柱体上产生脉动的横流向和顺流向的力。如果结构安装在弹簧上,则力会引起结构位移,继而会改变尾流,从而导致流固完全耦合。圆柱体在水流下的这种运动称为涡激振动。它是一种固有的非线性、独立的、具有多自由度的现象。当结构物的固有频率和涡脱落频率相近时会发生“锁定”现象,结构物振幅较大,易发生疲劳损伤,造成巨大的经济损失。在实际海洋工程中,结构物表面往往存在一定的粗糙度,这与数值模拟中的理想光滑表面不同。而粗糙度的存在会对涡激振动响应特性有所影响。虽然此问题在数值模拟和实验方面取得了一定的进展,但是还有许多问题尚待解决。因此,细长海洋结构物的涡激振动仍将是未来几年里海洋工程备受关注的研究课题。
在过去的几十年里,国内外有大量的文献推进了涡激振动问题的研究工作。对于低雷诺数下理想的光滑圆柱模型的结构动力学响应和尾流模式等已有了较成熟的结果。然而对于高雷诺数和其他截面类型结构物的研究相对较少。因此,以合理的模型和精度来预测和抑制涡激振动效应是一项挑战。
请支付后下载全文,论文总字数:30401字