纤维增强复合材料的拉伸蠕变细观有限元分析毕业论文
2021-11-07 20:58:32
摘 要
因聚合物的粘弹性特性,服役中的树脂基复合材料结构会发生蠕变现象,导致其刚度和强度发生衰退,致使复合材料结构失去继续承载能力。随着树脂基复合材料被广泛用于各类生产生活之中,分析其蠕变特性以及不同因素影响蠕变的机制具有重要的意义。
本论文依托于课题组三点弯曲蠕变实验数据,拟合定常蠕变阶段本构方程,利用三维有限元分析法,构建纤维增强树脂基复合材料蠕变单胞模型,系统研究了界面特性如厚度、模量以及纤维分布如纤维含量、纤维铺层角度对纤维增强复合材料蠕变性能的影响。结果表明:在强界面情况下,随着界面厚度增加,纤维轴向最大应力下降明显,增强效果显著;在弱界面情况下,虽然纤维轴向整体仍呈现出下降趋势,但增强效果并不显著,且没有一定的规律性;随着界面模量增大,在弱界面情况下,纤维轴向最大应力增大、基体蠕变应变下降,纤维增强效果显著,但在强界面情况下,纤维轴向最大应力与基体蠕变应变近乎保持不变;提高纤维含量,能极大减少基体蠕变应变,提高整体复合材料抗蠕变性能,减少应力集中现象;不同的纤维铺设角度的抗蠕变性能也有着差异,因而在实际使用过程中应尽量将载荷加载方向与纤维铺设角度相重合,从而保证结构的长期性能。纤维增强复合材料易在纤维末端容易产生较大的应力集中现象,因而此处更容易产生裂纹和导致微裂纹的扩展,使得复合材料的抗蠕变性能下降。长纤维增强复合材料与短纤维增强复合材料蠕变影响略有差别,但整体规律性保持一致。
关键词:蠕变;纤维增强复合材料;有限元方法;界面;纤维铺设角
Abstract
Due to the viscoelastic properties of the polymer, the resin-based composite material structure in service will creep, causing its rigidity and strength to decline, causing the composite material structure to lose its continued bearing capacity. As resin-based composite materials are used in various types of production and life more widely, it has a lot of significance to analyze the creep characteristics and the mechanism of different factors affecting creep.
This thesis relies on the three-point bending creep experimental data of the research group, fits the constitutive equation at the stage of steady creep, and uses three-dimensional finite element analysis to construct a unit cell model of fiber-reinforced resin matrix composite creep. And we study the influence of interface characteristics such as thickness,modulus and fiber distribution such as fiber content and fiber lay angle on the creep performance of fiber reinforced composites. The results show that in the case of a strong interface, as the thickness of the interface increases, the maximum stress in the fiber axis decreases significantly and the reinforcement effect is significant; in the case of a weak interface, although the overall fiber axis still shows a downward trend, the reinforcement effect is not significant , And there is no certain regularity; with the increase of the interface modulus, the maximum axial stress of the fiber increases and the creep strain of the matrix decreases under the weak interface. The fiber reinforcement effect is significant, but under the strong interface, the fiber axis maximum stress and the creep strain of the matrix remain almost unchanged; increasing the fiber content can greatly reduce the creep strain of the matrix, improve the creep resistance of the overall composite material, and reduce the stress concentration phenomenon; the creep resistance of different fiber laying angles also produce different effect, so in actual use, the load loading direction should be as close as possible to the fiber laying angle to ensure the long-term performance of the structure. Fiber-reinforced composite materials are prone to large stress concentration at the fiber ends, so cracks and micro-cracking are more likely to occur here, thereby reducing the creep resistance of the composite material. The creep effects of long fiber reinforced composites and short fiber reinforced composites are slightly different, but the overall regularity remains the same.
Keywords: creep; fiber-reinforced composite materials; finite element method;interface;fiber laying angle
目 录
第1章 绪论 1
1.1 纤维增强复合材料的应用背景 1
1.2 纤维增强复合材料的蠕变性能研究现状 1
第2章 有限元单胞计算模型的创建 3
2.1 本构方程 3
2.2 短纤维增强复合材料单胞模型 4
2.3 长纤维增强复合材料单胞模型 5
第3章 界面层对复合材料蠕变的影响 7
3.1 界面层厚度 7
3.2 界面弹性模量 9
3.3 小结 15
第4章 纤维对复合材料蠕变的影响 17
4.1 纤维含量 17
4.2 纤维铺设角度 19
4.3 小结 21
第5章 总结与展望 22
5.1 总结 22
5.2 展望与不足 22
参考文献 25
致谢 27
第1章 绪论
1.1 纤维增强复合材料的应用背景
复合材料一般指由两者及以上具有不同宏观构造或者不同力学特点的异性材料经过复合而形成的一种具有特殊性能和结构的材料。复合材料的使用贯穿着人们的生活,无论是最常见的钢筋混凝土结构,或者日常出行时使用的汽车、轨道交通、飞机等等,均由复合材料的身影。复合材料按照结构特点可分为以下四类:纤维增强复合材料;夹层复合材料;细粒复合材料;混杂复合材料。其中纤维增强复合材料主要由玻璃纤维、碳纤维、芳纶纤维等高性能纤维与基体材料经过缠绕,模压成型等特殊制造工艺形成的复合材料,具有比强度高、比模量大、轻量化、耐腐酸碱性强、耐久性好等优点,使得纤维增强复合材料的适用领域逐渐扩大,能够应用于较为恶劣条件下工作,更加满足现代人节能减排的要求,成为越来越多传统材料的替代品。
在土木工程领域,纤维增强复合材料也被广泛用以对现有结构的修复、强化等以提高原有结构的承载能力,宋文[1]等人通过纤维增强复合材料对现有大尺寸钢筋混凝土柱进行增强加固后,发现其承载力、延性以及耗能能力会有不同程度的提高,除此之外尹京[2]也利用纤维增强复合材料的高抗拉性能和轻量化特点,探究了纤维增强复合材料作为铁路桥限高防护材料的可能性。在机械设计领域,叶辉[3]等人采用碳纤维和玻璃纤维两种增强材料与环氧树脂复合而成的新型材料,对发动机罩进行设计和性能对比分析,其表面在满足刚度、模态等要求的同时,能够有效的减轻重量,实现发动机罩盖减重51.2%。在我国自主研发制造的C919大飞机中先进复合材料使用量达到20%,复合材料结构占全机结构总重的11.5%,其使用的复合材料是由环氧树脂/酚醛树脂为基体、碳纤维/玻璃纤维为增强材料的树脂基复合材料以及芳纶蜂窝材料[4]。