天然蒙脱石、高岭土制备Si纳米片的研究毕业论文
2021-04-05 00:11:57
摘 要
蒙脱石独特的水化膨胀性质和层状结构使其在水溶液中能超声分层剥离成二维纳米片,高岭土也具有层状结构,同样能够在水溶液中超声分层剥离成二维纳米片。蒙脱石和高岭土超声剥离制备的二维纳米片具有大的比表面积,将其应用于制备用来做锂电池负极材料的硅纳米片,能够拓展蒙脱石和高岭土的应用领域和提高蒙脱石和高岭土的利用价值。本论文以提纯钠化后的蒙脱石和高岭土为研究对象,以超声剥离制备出的蒙脱石纳米片和高岭土纳米片为原料,通过改变蒙脱石纳米片和高岭土纳米片的堆叠方式,采用镁热还原法分别制备出三种不同的硅纳米片,将由提纯钠化的钠基蒙脱石和高岭土制备出来的三种硅纳米片通过激光拉曼光谱(Raman)、X射线衍射(XRD)、X射线光电子能谱分析(XPS)、扫描电子显微镜(SEM)和比表面积测试(BET)五种测试手段分别测试这三种硅纳米片的层状材料的层间距、分子结构、样品的组成以及组成元素的化学环境、微观结构及形貌、比表面积等,通过分析所测的实验数据得到下述结论:以未剥离的原矿制备的硅纳米片含有对应的矿物和MgAl2O4等杂质,而且其被还原程度低,制备的硅纳米片堆叠在一起,比表面积较小;以剥离的矿物纳米片为原料制备的硅纳米片含有MgAl2O4杂质,还原程度增加,制备的硅纳米片比较分散,比表面积增大;以“卡房结构”的矿物纳米片为原料制备的硅纳米片只有硅,还原程度最高,制备的硅纳米片不仅分散而且具有片层结构,比表面积最大。Raman表明三种方法制备的硅纳米片中硅的特征峰的横坐标值越来越接近硅的标准特征峰横坐标值521。
关键词:蒙脱石;高岭土;硅纳米片;镁热还原
Abstract
The unique hydration expansion properties and layered structure of montmorillonite enable it to be ultrasonic stratified and exfoliated into two-dimensional nano-sheets in aqueous solutions. Kaolin also has layered structure and can also be ultrasonic stratified and exfoliated into nano-sheets in aqueous solutions. The nano-sheets prepared by ultrasonic exfoliation of montmorillonite and kaolin have a large specific surface area, and its application in the preparation of silicon nano-sheets used as the cathode material for lithium batteries can expand the application field of montmorillonite and kaolin. It also can improve the value in use of montmorillonite and kaolin. In this paper, montmorillonite and kaolin after purification and natrification are taken as the research objects, and montmorillonite nano-sheets and kaolin nano-sheets prepared by ultrasonic exfoliating are used as raw materials. By changing the stacking mode of montmorillonite nano-sheets and kaolin nano-sheets, magnesium thermal reduction method is adopted to prepare three kinds of different silicon nano-sheets. By purificating sodium montmorillonite and kaolin preparation of three kinds of nanometer silicon slice by laser Raman spectroscopy (Raman), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and specific surface area (BET), We respectively use five kinds of testing methods to test the three silicon layers spacing of nanometer pieces of layered materials, molecular structure, composition of the sample, and the chemical environment element, microstructure and morphology, specific surface area and so on. Through the analysis of the experimental data of the test to get the following conclusion: The silicon nanocrystals prepared from un-exfoliated raw ore contain corresponding minerals and impurities such as MgAl2O4, and are reduced to a low degree. The prepared silicon nanocrystals are stacked together with a small specific surface area. The silicon nanocrystals prepared from the exfoliated mineral nanocrystals contain impurities of MgAl2O4, and the reduction degree increases. The prepared silicon nanocrystals are more dispersed and the specific surface area increases. The silicon nanocrystals prepared from the mineral nanocrystals with "blocking structure" are only silicon, with the highest reduction degree. The prepared silicon nanocrystals are not only dispersed, but also have lamellar structure, with the largest specific surface area. Raman shows that the x-coordinate value of the characteristic peak of silicon prepared by the three methods is closer and closer to the x-coordinate value of the standard characteristic peak of silicon 521.
Keywords: Montmorillonite; kaolin; silicon nano-sheets; magnesium thermal reduction
目 录
摘 要 I
Abstract II
第一章 绪论 1
1.1研究背景及意义 1
1.2研究目的 1
1.3国内外研究现状及趋势 2
1.3.1纳米材料概述 2
1.3.2电极概述 2
1.3.3纳米材料做电极材料 3
1.4 蒙脱石与高岭石概述 3
1.4.1 蒙脱石的矿物学特征 3
1.4.2高岭土的矿物学特征 4
1.4.3 蒙脱石与高岭石的剥离 4
1.5研究内容 5
第二章 实验材料及研究方法 6
2.1 蒙脱石和高岭土原矿提纯 6
2.2 硅纳米片的制备 7
2.3 测试及表征 7
2.3.1 X射线衍射(XRD) 7
2.3.2激光拉曼光谱(Raman) 9
2.3.3 X射线光电子能谱分析(XPS) 9
2.3.4扫描电子显微镜(SEM) 9
2.3.5比表面积测试(BET) 10
第三章 分析与讨论 11
3.1 X射线衍射(XRD) 11
3.2激光拉曼光谱(Raman) 15
3.3 X射线光电子能谱分析(XPS) 18
3.4扫描电子显微镜(SEM) 23
3.5比表面积测试(BET) 27
第四章 结论 31
参考文献 32
第一章 绪论
1.1研究背景及意义
蒙脱石和高岭土作为典型的层状粘土矿物,因它们的价格都比较低廉,储量巨大[1-2],而且由于它们优异的化学和热稳定性和良好的机械性能被人们广泛使用[3],随着时代的进步与科技的发展,蒙脱石在人们的生活中扮演不可替代的作用,它是思密达药物等物质的重要组成部分,同时也可以作为独立产品用在污水处理等技术领域[4]。当把蒙脱石颗粒放在水溶液中并加以搅拌,使蒙脱石颗粒均匀分散在纯净水中时,由于蒙脱石片层和高岭土片层间金属阳离子的水化作用和蒙脱石的亲水性,水溶液中大量的水分子就会进入到蒙脱石和高岭土片层间,从而会减弱蒙脱石和高岭土片层间的化学键作用力,蒙脱石和高岭土的片层之间的距离就会增大。在外加能量的作用下,蒙脱石片层和高岭土片层的层间距进一步增大并剥离开成为相互独立的片层。蒙脱石和高岭土剥离后的二维片层结构以及比表面积、孔容积和活性位点等明显增加给诸多领域带来了各种正面或负面影响。当蒙脱石纳米片应用到吸附剂中时能够极大的提高吸附剂的比表面积和活性位点从而增强吸附剂的性能[5],同时蒙脱石纳米片和高岭土纳米片还可用来制备硅纳米片,用制备的硅纳米片可以用来做锂电池的负电极材料[6]。目前剥离蒙脱石和高岭土的主要方法有物理方法(球磨剥离、超声剥离等)、化学方法(插层、阳离子交换等)和物理化学复合方法。而这些方法往往无法兼顾蒙脱石纳米片和高岭土纳米片的纯度、剥离效率以及对片层大小控制,使得对蒙脱石纳米片的研究及应用受到限制。
本论文以天然蒙脱石和高岭土为原料,由于天然蒙脱石不是钠基蒙脱石,因此需要对天然蒙脱石进行提纯钠化操作,先对高岭土进行XRD分析,XRD分析表明高岭土纯度很高,所以不需要对高岭土进行提纯钠化操作。这不仅加深了对于蒙脱石和高岭土分层剥离行为的认识,用蒙脱石纳米片和高岭土纳米片制备的硅纳米片土纳米片可以用来制作锂电池的负电极材料,从而提高蒙脱石和高岭土资源的价值具有十分重要的意义。