碳量子点的制备及其对Fe3 的检测任务书
2020-06-08 21:15:14
1. 毕业设计(论文)的内容和要求
碳量子点作为发光碳纳米材料家族中的一员,因其独特的光电性质,引起了外界越来越多的关注。
碳点的制备主要分为自上而下(up-down)的方法和自下而上(bottom-up)的方法。
两种方法各有自己的优缺点,由于自下而上的方法可以很好的控制制备量子的形貌尺寸并提高量子产率(quantum yield),所以本实验采用该法制备碳量子点。
2. 参考文献
[1] X.L. Li, X.R. Wang, L. Zhang, S.W. Lee, H.G. Dai, Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319 (2008) 1229#8211;1232. [2] L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, A.K. Geim, Chaotic dirac billiard in graphene quantum dots, Science 320 (2008) 356#8211;358. [3] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc. 126 (2004) 12736#8211;12737. [4] S.Y. Ju, W.P. Kopcha, F. Papadimitrakopoulos, Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization, Science 323 (2009) 1319#8211;1323. [5] S.J. Yu, M.W. Kang, H.C. Chang, K.M. Chen, Y.C. Yu, Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity, J. Am. Chem. Soc. 127 (2005) 17604#8211;17605. [6] S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights, Angew. Chem. Int. Ed. 49 (2010) 6726#8211;6744. [7] Y. Li, Y. Hu, Y. Zhao, G. Shi, Q.L. Deng, Y.B. Hou, L.T. Qu, An electrochemical avenue to green-luminescent graphene quantum dots as potential electronacceptors for photovoltaics, Adv. Mater. 23 (2011) 776#8211;780. [8] X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nanographene oxide for cellular imaging and drug delivery, Nano Res. 1 (2008) 203#8211;212. [9] J. Shen, Y. Zhu, X.L. Yang, C.Z. Li, Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices, Chem. Commun. 48 (2012) 3686#8211;3899. [10] J.H. Shen, Y.H. Zhu, X. Yang, J. Zong, J.M. Zhang, C.Z. Li, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light, New J. Chem. 36 (2012) 97#8211;101. [11] D.Y. Pan, J.C. Zhang, Z. Li, M.H. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots, Adv. Mater. 22 (2010) 734#8211;738. [12] J.H. Shen, Y.H. Zhu, C. Chen, X.L. Yang, C.Z. Li, Facile preparation and upconversion luminescence of graphene quantum dots, Chem. Commun. 47 (2011) 2580#8211;2582. [13] X. Yan, X. Cui, Large, solution-processable graphene quantum dots as light absorbers for photovoltaics, Nano Lett. 10 (2010) 1869#8211;1973. [14] R. Liu, D. Wu, X. Feng, K. Mullen, Bottom#8211;up fabrication of photoluminescent graphene quantum dots with uniform morphology, J. Am. Chem. Soc. 133 (2011) 15221#8211;15223. [15] H. Liu, Y. Liu, D. Zhu, Chemical doping of graphene, J. Mater. Chem. 21 (2011) 3335#8211;3345. [16] Y. Li, Z. Zhou, P. Shen, Z.F. Chen, Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons, ACS Nano 3 (2009) 1952#8211;1958. [17] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G.Q. Shi, L. Dai, L. Qu, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups, J. Am. Chem. Soc. 134 (2012) 15#8211;18. [18] C. Hu, Y. Liu, Y.L. Yang, J. Cui, Z. Huang, Y. Wang, L. Yang, H. Wang, Y. Xiao, J. Rong, One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide, J. Mater. Chem. B 1 (2013) 39#8211;42. [19] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers, Nano Lett. 12 (2012) 844#8211;849. [20] X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, L.J. Li, Doping single-layer graphene with aromatic molecules, Small 5 (2009) 1422#8211;1426. [21] G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide, Adv. Mater. 22 (2010) 505#8211;509. [22] H. Tetsuka, H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Optically tunable amino-functionalized graphene quantum dots, Adv. Mater. 24 (2012) 5333#8211;5338. [23] H. Liu, C. Quin, Y.G. Wei, X. Lin, G.G. Gao, F.Y. Li, X.S. Qu, Copper-complex-linked polytungsto-bismuthate(-antimonite) chain containing sandwich Cu(II) ions partially modified with imidazole ligand, Inorg. Chem. 47 (2008) 9413#8211;9419. [24] S.K. Sahoo, D. Sharma, R.K. Bera, G. Crisponi, J.F. Callan, Iron(III) selective molecular and supramolecular fluorescent probes, Chem. Soc. Rev. 41 (2012) 7195#8211;7227.
3. 毕业设计(论文)进程安排
2016.12.20-2017.1.14 查阅资料,完成开题报告和任务书 2017.2.18-2017.3.2 确定方案,学习实验过程和操作 2017.3.3-2017.5.1 独立实验,制备CDs并对其表征分析 2017.5.2-2017.5.13 完成CDs对Fe3 检测试验 2017.5.14-2017.6.1 数据整理,书写论文,制作PPT 2017.6.1-2017.6.5 修改论文并定稿
您可能感兴趣的文章
- BN嵌入型四苯并五苯:一种工具高稳定性的并五苯衍生物外文翻译资料
- MoS2和石墨烯作为助催化剂在增强的可见光光催化H2生产活性的多臂CdS纳米棒的作用外文翻译资料
- 通过在BiVO4的不同晶面上进行双助剂的合理组装制备高效率的光催化剂外文翻译资料
- 非编码RNA的固相合成研究外文翻译资料
- 氢化驱动的导电Na2Ti3O7纳米阵列作为钠离子电池阳极外文翻译资料
- 高能量及功率密度的可充电锌-二氧化锰电池外文翻译资料
- 利用导电聚合物纳米线阵列来增强电化学性能外文翻译资料
- 自支撑Na2Ti3O7纳米阵列/石墨烯泡沫和石墨烯泡沫准固态钠离子电容器电极外文翻译资料
- 基于碳纳米管金纳米粒子辣根过氧化物酶构建的过氧化氢生物传感器毕业论文
- 新型联二吡啶Pt(II)炔配合物的设计、合成及光物理性质研究毕业论文