基于石墨烯泡沫的酶生物传感器的构建研究任务书
2020-06-08 21:16:16
1. 毕业设计(论文)的内容和要求
作为一种生物催化剂,酶调节着生物体内大多数生命活动。通常情况下,酶在空间上被锚定在细胞膜上或固定于细胞内的特定区域,而受限于微米或纳米的狭小空间里。由于酶在生物传感及代谢工程方面的独特潜力,如何进行酶组装以及如何保证在催化反应过程中酶的催化活性和高催化效率,已经引起研究者们广泛的兴趣。
纳米材料在微/纳米酶催化反应器研制中的应用比较广泛。常见的纳米材料主要包括纳米液滴、介孔二氧化硅、多孔氧化铝、大孔二氧化硅泡沫等等。作为一种研究和应用最为广泛的纳米器件之一,石墨烯泡沫(ngf)可以通过模板法、溶胶-凝胶法、水热法、以及核沸腾法。在这些方法中,模板法相对简单容易,其主要分为软模板法和硬模板法。此主要用硬模板法,以二氧化硅作为硬模板,通过氧化石墨烯包裹在二氧化硅表面可以制成分布均匀、尺寸大小可控、机械粘合强度好的石墨烯泡沫。通过调节二氧化硅球体的大小,比如制备二氧化硅的反应温度、反应时间、teos的浓度和氨水的浓度,因而石墨烯泡沫的孔径可以得到精确调控。ngf除了在光催化、光电化学(pec)、超级电容器、药物释放以及光电转换方面得到广泛应用,而且因其具有良好的物理化学性能,如大比表面积、可控的孔径、生物兼容性好、化学稳定性高等特点,使得ngf可以提供优良的微环境固定生物分子,从而提高生物分子质量和生物活性,应用于生物研究领域。
受ngf被广泛应用于固定生物分子的启发,本课题采用硬模板法,以二氧化硅为模板通过煅烧制备出多孔石墨烯泡沫,调控二氧化硅的大小得到不同孔径的石墨烯泡沫。结合细胞色素p450酶后,固定在玻碳电极表面上,并基于该纳米复合材料构建一种用于内分泌干扰物检测的电化学生物传感器,以电化学手段作为驱动方式,对受限在石墨烯泡沫里酶对底物代谢的催化效率和酶动力学参数进行详细研究。
2. 参考文献
[1] Xiaoni Fang, Jingjing Zhao, Kun Zhang, Pengyuan Yang, Liang Qiao,* and Baohong Liu. Polydopamine Grafted Porous Graphene as Biocompatible Nanoreactor for Efficient Identification of Membrane Proteins. ACS Appl. Mater. Interfaces 2016, 8, 6363#8722;6370. [2] Rong-Bin Song, Cui-E Zhao, Li-Ping Jiang, Essam Sayed Abdel-Halim, Jian-Rong Zhang, and Jun-Jie Zhu. Bacteria-Affinity 3D Macroporous Graphene/MWCNTs/Fe3O4 Foams. ACS Appl. Mater. Interfaces 2016, 8, 16170#8722;16177. [3] Xiaodan Huang , Kun Qian , Jie Yang , Jun Zhang , Li Li , Chengzhong Yu , and Dongyuan Zhao. Functional Nanoporous Graphene Foams with Controlled Pore Sizes. Adv. Mater. 2012, 24, 4419#8211;4423. [4] Nguyen Bao Trung, Tran Van Tam, Hye Ryeon Kim, Seung Hyun Hur, Eui Jung Kim, Won Mook Choi. Three-dimensional hollow balls of graphene#8211;polyaniline hybrids for supercapacitor applications. Chemical Engineering Journal 255 (2014) 89#8211;96. [5] Meng Wang, Xidong Duan, Yuxi Xu, and Xiangfeng Duan. Functional Three-Dimensional Graphene/Polymer Composites. ACS Nano 2016, 10, 7231#8722;7247. [6] Xiaoni Fang, Peng Zhang, Liang Qiao, Xiaoyan Feng, Xiangmin Zhang, Hubert H. Girault, and Baohong Liu. Efficient Drug Metabolism Strategy Based on Microsome#8722;Mesoporous Organosilica Nanoreactors. Anal. Chem. 2014, 86, 10870#8722;10876. [7] Nima Aliakbarinodehi,* Giovanni De Micheli, and Sandro Carrara. Enzymatic and Nonenzymatic Electrochemical Interaction of Abiraterone (Antiprostate Cancer Drug) with Multiwalled Carbon Nanotube Bioelectrodes. Anal. Chem. 2016, 88, 9347#8722;9350. [8] Yidan Liu, Xiuhui Liu, Zhipan Guo, Zhongai Hu, Zhonghua Xue, Xiaoquan Lu. Horseradish peroxidase supported on porous graphene as a novel sensing platform for detection of hydrogen peroxide in living cells sensitively. Biosensors and Bioelectronics 87 (2017) 101#8211;107. [9] Jusheng Lu, Yanfei Shen* and Songqin Liu. Enhanced light-driven catalytic performance of [10] Chuangang Hu, Yang Zhao, Huhu Cheng, Yanhong Wang, Zelin Dong, Changcheng Jiang, [11] Bing Sun, Xiaodan Huang, Shuangqiang Chen, Paul Munroe, and Guoxiu Wang. Porous Graphene Nanoarchitectures: An Efficient Catalyst for Low Charge-Overpotential, Long Life, and High Capacity Lithium#8722;Oxygen Batteries. Nano Lett. 2014, 14, 3145#8722;3152. [12] Lili Jiang and Zhuangjun Fan. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale, 2014, 6, 1922#8211;1945. [13] Wei Deng, Qile Fang, Xufeng Zhou,* Hailiang Cao and Zhaoping Liu. Hydrothermal self-assembly of graphene foams with controllable pore size. RSC Adv., 2016, 6, 20843#8211;20849. [14] Sheng Han , Dongqing Wu , Shuang Li , Fan Zhang ,* and Xinliang Feng. Porous Graphene Materials for Advanced Electrochemical Energy Storage and Conversion Devices. Adv. Mater. 2014, 26, 849#8211;864. [15] Shuang Ren, Huan Wang,* Yufan Zhang, Yuena Sun, Lanfen Li, Hongyi Zhang, Zhihong Shi, Mingjie Li and Meng Li. Convenient and controllable preparation of a novel uniformly nitrogen doped porous graphene/ Pt nanoflower material and its highly-efficient electrochemical biosensing. Analyst, 2016, 141, 2741#8211;2747. [16] Yafeng Wu, Chengliang Chen, and Songqin Liu. Enzyme-Functionalized Silica Nanoparticles as Sensitive Labels in Biosensing. Anal. Chem. 2009, 81, 1600#8211;1607. [17] Xiaoni Fang, Liang Qiao, Guoquan Yan, Pengyuan Yang, and Baohong Liu. Multifunctional Nanoreactor for Comprehensive Characterization of Membrane Proteins Based on Surface Functionalized Mesoporous Foams. Anal. Chem. 2015, 87, 9360#8722;9367. [18] Chengliang Chen, Ying Li, Songqin Liu. Fabrication of macroporous platinum using monodisperse silica nanoparticle template and its application in methanol catalytic oxidation. Journal of Electroanalytical Chemistry 632 (2009) 14#8211;19. |
3. 毕业设计(论文)进程安排
起讫日期 | 设计(论文)各阶段工作内容 | 备 注 |
2017.1.2-2017.3.1 | 查阅资料,完成开题报告和任务书 |
|
2017.3.2-2017.3.10 | 确定方案,学习实验过程和操作 |
|
2017.3.11-2017.4.30 | 独立实验,合成产品并进行结构表征 |
|
2017.5.1-2017.5.30 | 数据整理,书写论文,制作PPT |
|
2017.5.30- | 修改论文并完成答辩 |