登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 化学化工与生命科学类 > 应用化学 > 正文

基于功能化石墨烯的酶传感器构建研究毕业论文

 2022-04-13 20:05:21  

论文总字数:25659字

摘 要

ABSTRACT Ⅳ

第一章 综 述 1

1.1引 言 1

1.2石墨烯的制备 2

1.2.1微机械剥离法 2

1.2.2晶体外延生长法 2

1.2.3 有机合成法 3

1.3 氧化石墨烯的制备 3

1.4氧化石墨烯的还原 3

1.4.1 用维生素C还原GO 4

1.4.2 用聚乙烯亚胺(PEI)还原GO 4

1.4.3 用L-赖氨酸还原GO 4

1.5氧化石墨烯的功能化 4

1.5.1 聚酰亚胺/石墨烯纳米复合薄膜的制备 5

1.5.2 PI/ GO纳米复合薄膜的制备 5

1.6酶的固定化方法 5

1.6.1吸附法 5

1.6.2 包埋法 6

1.6.3 共价键合法 6

1.7本论文的研究背景及主要工作 7

第二章 基于功能化石墨烯的酶传感器构建研究 10

2.1主要仪器和试剂 10

2.2纳米复合材料的合成 11

2.2.1 PDA/RGO仿生材料的合成 11

2.2.2 Au/PDA/RGO纳米复合材料的合成 11

2.3 Au/PDA/RGO/GC和Tyr/Au/PDA/RGO/GC修饰电极的制备 12

2.3.1 Au/PDA/RGO修饰电极的制备 12

2.3.2 Tyr/Au/PDA/RGO/GC修饰电极的制备 13

2.4 溶液的配制 13

2.5 实验方法 13

第三章 结果与讨论 14

3.1 Au/PDA/RGO纳米复合材料的表征 14

3.1.1 Au/PDA/RGO纳米复合材料的色度变化 14

3.1.2 Au/PDA/RGO纳米复合材料的紫外分析. 15

3.2 Au/PDA/RGO纳米复合材料的EDX分析 16

3.3 Tyr/Au/PDA/RGO/GC修饰电极的电催化性能研究 16

3.3.1 电位优化 16

3.3.2 IT曲线 17

3.3.3 干扰实验 18

第四章 结论与意义 20

4.1 实验结论 20

4.2 本课题研究的意义 20

参 考 文 献 21

致谢 26

基于功能化石墨烯的酶传感器构建研究

摘 要

酶生物传感器是电化学生物传感器的一种,其是利用酶在生化反应中特殊的催化作用,可使糖类、醇类、有机酸、氨基酸等生物分子,在常温下迅速被分解或氧化。反应过程中消耗或产生的化学物质即可用转换器转变为电信号进行检测。纳米材料不仅具有卓越的生物相容性,还具有许多其他性质,例如:良好的电子传递能力,化学稳定性和具有较大的比表面积,所以是生物分子理想的固载基质。将功能化的纳米材料如金属纳米粒子、聚合物等用于构建酶生物传感器,能够显著提高检测性能。

本文通过在弱碱性条件下使多巴胺(DA)的氨基和氧化石墨烯的羟基通过迈克尔加成或席夫碱反应进行一步原位合成,得到水溶性较好的PDA/RGO纳米复合材料。同时,基于金纳米粒子高催化活性和优异的导电性以及PDA/RGO的邻苯二酚结构,将Au通过共价键作用接到PDA/RGO纳米复合材料上,得到具有良好导电性和生物相容性的Au/PDA/RGO纳米复合材料。酪氨酸酶固定在合成的纳米复合材料上,将其滴涂在玻碳电极上,对双酚A表现出显著的电化学催化活性。通过紫外-可见分光光度法,元素分析和电化学测试对合成的复合材料进行表征。实验中我们优化了一些参数对酪氨酸酶催化的影响。在最佳条件下,该生物传感器在在50 nM到20 μM范围内对双酚A有线性响应,检出限(S/N=3)为53.73 nM,灵敏度为0.1336μA/nM。该传感器也能够有效的排除4-氨基苯酚、对硝基苯酚、间苯二酚和混合物的干扰,证明成功构建了具有良好检测性能的酶电化学生物传感器。

关键词:酶传感器;功能化石墨烯;酪氨酸酶;纳米金;多巴胺

Study on the Construction of Enzymesensor Based on Functionalized Graphene

ABSTRACT

Enzyme biosensor is one of electrochemical biosensors,which uses special catalysis of enzyme in the biochemical reactions,rapidly decomposes or oxidizes sugars,alcohols, organic acids amino acids and other biological molecules at room temperature. Chemical materials consumed or produced during the reaction can be transformed to electrical signals to detect by using converter. Nano-materials not only possess excellent biocompatibility, but also has many other properties,such as good electron transport capability, superior chemical stability and large specific surface area,so they are preferably a biomolecule immobilization matrix.Using functionalized nanomaterials such as metal nanoparticles and polymers to construct enzyme biosensors can significantly improve the detection performance.

In this work,we made one-step synthesis in situ through Michael Addition or Schiff base reaction of the amino group of dopamine (DA)and the hydroxyl groups of graphene oxide in alkaline conditions. PDA/RGO nanocomposites with good water solubility were obtained.At the same time,based on the high catalytic activity and excellent electrical conductivity of gold nanoparticles and catechol structure of PDA/RGO, Au grafted onto PDA/RGO nanocomposites through Covalent effect,then Au/PDA/RGO nanocomposites with excellent electrical conductivity and biocompatibility were obtained Tyrosinase was immobilized on the synthesized nanocomposites, dispensed it onto a glassy carbon electrode,it exhibited significant electrochemical catalytic activity towards bisphenol A.By using UV-visible spectrophotometry,elemental analysis and electrochemical tests, synthesized composites were characterized. In experiment,we optimized influence of some

parameters towards catalysis of tyrosinase. Under optimal conditions, the biosensor showed linear response towards bisphenol A in the range of 50 nM to 20 mΜ, detection limit(S/N=3) is 53.73 nM,sensibility is 0.1336μA/nM. The sensor can also exclude interference of 4-nitrophenol, p-nitrophenol, resorcinol and their mixtures effectively,which proves the successful construction of enzyme biosensor with good detection performance.

请支付后下载全文,论文总字数:25659字

您需要先支付 50元 才能查看全部内容!立即支付

微信号:bysjorg

Copyright © 2010-2022 毕业论文网 站点地图