登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 文献综述 > 理工学类 > 自动化 > 正文

基于空间矢量控制的永磁同步电机仿真文献综述

 2020-03-26 14:50:24  

随着微电子和电力电子技术飞速的发展, 越来越多的交流伺服系统采用了数字信号处理器(DSP) 和智能功率模块(IPM),从而实现了从模拟控制到数字控制的转变。空间矢量PWM调制,它具有线性范围宽,高次谐波少,易于数字实现等优点,在新型的驱动器中得到了普遍应用。永磁同步电机(PMSM)具有较高的运行效率、较高的转矩密度、转动惯量小、转矩脉动小、可高速运行等特点,在诸如高性能机床进给控制、位置控制、机器人等领域PMSM得到了广泛的应用。近几年来,国内外学者将空间矢量脉宽调制算法应用于永磁同步电机控制中,并取得了一定的成就。同时,永磁同步电机交流变频调速系统发展也很快,已成为调速系统的主要研究和发展对象。数字仿真技术一直是交流调速系统分析计算的有用工具。但随着对PMSM控制技术要求的提高,空间矢量PWM控制系统成为首选方案。

永磁同步电动机属于同步电动机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以永磁同步电动机并不会产生普通感应电机的频差现象。永磁同步电动机中又有单相、两相和三相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为广泛的三相永磁同步电动机。永磁同步电动机的主要由电动机本体、位置传感器(对于位置传感器检测方法)与电子开关线路三部分组成,永磁同步电动机工作原理如图2.1(见附件)所示。

从图2.1可见,永磁同步电动机组件主要由电动机本体位置传感器和电子开关线路三部分构成。其定子绕组一般制成多相,转子由永磁材料制成。电动机本体在结构上与永磁同步电动机相似,但没有笼型绕组和其它起动装置。其定子绕组一般制成多相(三相、四相、五相不等),转子由永久磁钢按一定极对数(2p=2, 4,#8230;#8230;)组成。定子绕组分别与电子开关线路中相应的功率开关器件联接。位置传感器的跟踪转子与电动机转轴相联接。

当定子绕组的某一相通电时,该电流与转子永久磁钢的磁极所产生的磁场相互作用而产生转矩,驱动转子旋转。位置传感器则将转子磁钢位置信号变换成电信号,去控制电子开关线路,从而使定子各相绕组按一定次序导通,定子相电流随转子位置的变化而按一定的次序换相。由于电子开关线路的导通次序是与转子转角同步的,因而起到了机械换向器的换向作用。

因此平常所说的永磁同步电动机,就其基本结构而言,可以认为是一台由电子开关线路、电动机本体及位置传感器三部分组成的电动机系统。

从电机分析理论角度来看,矢量变换控制技术利用坐标变换,将三相系统等效为两相系统,再经过按转子磁场定向的同步旋转变换实现对定子电流励磁分量与转矩分量之间的解藕,从而达到分别控制电动机的磁链和电流的目的。所涉及到理论基础有两方面:一是坐标变换理论;二是不同坐标系中电机的数学模型。

当永磁同步电动机的定子通入三相交流电时,三相电流在定子绕组的电阻上产生电压降。由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势;另一方面以电磁力拖动转子以同步转速旋转。电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通,并在定子绕组中产生感应漏电动势。此外,转子永磁体产生的磁场也以同步转速切割定子绕组。从而产生空载电动势。为了便于分析,在建立数学模型时,假设以下参数:①忽略电动机的铁心饱和;②不计电机中的涡流和磁滞损耗;③定子和转子磁动势所产生的磁场沿定子内圆按正弦分布,即忽略磁场中所有的空间谐波;④各相绕组对称,即各相绕组的匝数与电阻相同,各相轴线相互位移同样的电角度。 

任何电动机的电磁转矩都是由主磁场和电枢磁场相互作用产生的。直流电动机的主磁场和电枢磁场在空间互差90#176;,因此可以独立调节;交流电机的主磁场和电枢磁场互不垂直,互相影响。因此,长期以来,交流电动机的转矩控制性能较差。经过长期研究,目前的交流电机控制有恒压频比控制、矢量控制、直接转矩控制等方案。

1 恒压频比控制 恒压频比控制是一种开环控制。它根据系统的给定,利用空间矢量脉宽调制转化为期望的输出电压Uo进行控制,使电动机以一定的转速运转。在一些动态性能要求不高的场所,由于开环变压变频控制方式简单,至今仍普遍用于一般的调速系统中,但因其依据电动机的稳态模型,无法获得理想的动态控制性能,因此必须依据电动机的动态数学模型。永磁同步电动机的动态数学模型为非线性、多变量,它含有ω与id或iq的乘积项,因此要得到精确的动态控制性能,必须对ω和id,iq解耦。近年来,研究各种非线性控制器用于解决永磁同步电动机的非线性特性。

2 矢量控制 高性能的交流调速系统需要现代控制理论的支持,对于交流电动机,目前使用最广泛的当属矢量控制方案。自1971年德国西门子公司F.Blaschke提出矢量控制原理,该控制方案就倍受青睐。因此,对其进行深入研究。  矢量控制的基本思想是:在普通的三相交流电动机上模拟直流电机转矩的控制规律,磁场定向坐标通过矢量变换,将三相交流电动机的定子电流分解成励磁电流分量和转矩电流分量,并使这两个分量相互垂直,彼此独立,然后分别调节,以获得像直流电动机一样良好的动态特性。因此矢量控制的关键在于对定子电流幅值和空间位置(频率和相位)的控制。矢量控制的目的是改善转矩控制性能,最终的实施是对id,iq的控制。由于定子侧的物理量都是交流量,其空间矢量在空间以同步转速旋转,因此调节、控制和计算都不方便。需借助复杂的坐标变换进行矢量控制,而且对电动机参数的依赖性很大,难以保证完全解耦,使控制效果大打折扣。

剩余内容已隐藏,您需要先支付 5元 才能查看该篇文章全部内容!立即支付

微信号:bysjorg

Copyright © 2010-2022 毕业论文网 站点地图