闭式燃料电池多孔电极内的水分迁移特性研究毕业论文
2021-05-06 12:13:22
摘 要
与先前的能源相比,质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)在拥有效率高、低噪音、零污染、负载连续运行可靠等特点的同时,还具有室温启动快、无电解液流失、水易排出、寿命长、比功率与比能量高等优点,因此无论是其发展潜力还是应用前景都尤其被看好。在一些特殊领域与环境作业时(太空、水下等),由于燃料电池内部所产生的气体无法与外界进行交换,由此必须满足其完全密闭的条件,本文所研究就是这种闭式燃料电池。燃料电池技术尚未成熟,为了提高氢气燃料利用率,提高电池效率,从而提高电池性能,优化水管理问题为人们所探索,本文既是从闭式燃料电池入手,深入探究电池内部具体的水迁移规律。
为了深入探究质子交换膜燃料电池内的水迁移规律,本文将电池内部的水传递具体划分,分别分析计算流道中的水滴球冠生成过程与水滴从质子交换膜经过扩散层及催化层的过程(即穿过弯曲毛细管的过程)。由于水传递的效率将直接对电池性能产生密切的影响,因此,本文所探究出的结论将能具体细化到因影响水传递的工作电流、扩散层厚度和管道孔径等因素对电池工作性能的趋势、梯度和变化产生的直接影响。并在数值拟定后,分别得出了各因素对水传递效率的影响关系曲线,即球冠生成时间随电池工作电流的增大而增大,水滴穿过弯曲毛细管的时间随扩散层厚度的增大而增大,随管道孔径的增大而减小。
在确定各因素对水传递的具体影响趋势及梯度之后,根据上述计算出的两部分水传递过程,我们还可计算出每一循环水传递的总时间,并根据计算结果发现,由于水滴球冠生成之间较长,相比之下穿过弯曲毛细管的时间可以忽略不计,也就是说在水滴生成之后,水滴顺管道将可无滞留顺利传出,因此两部分时间可直接相加,互无影响。因此为探讨电池流道内可能会发生的水淹现象,本文放弃先前的垂直流道模型,重新建立开口水平流道的电池模型,最后顺利算出本文模型中的燃料电池在各个过量系数与电流密度下的临界空气流量,以此得出空气流量在此值之上时流道内的水传递过程顺畅,空气流量在此值之下时流道内将会产生水淹现象的结论,为水淹现象的预防与避免作出了合理的参考。
关键词:质子交换膜;闭口 ;水传递 ;流道
Abstract
Compared with the previous energy, Proton Exchange Membrane Fuel Cell (PEMFC) with the characteristics of high efficiency, low noise, zero pollution and load being reliable and continuous operation, also has the qualities of starting in the room temperature quickly, no electrolyte leakage, water discharge, long service life, high power and high specific energy. So whether owning to its potential for development or application prospects, it is particularly promising. In some special field and working environment (space, water, etc.), due to the gas generated inside the fuel cell can’t be exchanged with the environment outside. It must meet the completely closed condition. In this paper, the study is the dead-ended proton exchange membrane fuel cell. Fuel cell technology is not mature yet, in order to improve the utilization ratio of hydrogen fuel, improving the efficiency of the battery, so as to improve the battery performance and optimizing water management problem are for people to explore. This paper starts from a dead-ended proton exchange membrane fuel cell and get in-depth study of cell specific internal water migration.
In order to deeply explore the water migration of the Proton Exchange Membrane Fuel Cell (PEMFC), in this paper, the water transfer of the internal battery was put in specific division. It is that we analyze and calculate the process of the drop formation in the channel and the process of the drop from the proton exchange membrane passing through the diffusion layer and catalyst layer (i.e. the process of passing through the bending capillary). Due to the water transfer efficiency will directly have effect on the cell performance closely. Therefore, the inquiry of the conclusion will be able to specific to the effect of the battery’s trend, gradient and variation and detailed because of the influence of water transport current, diffusion layer thickness and pipe diameter and other factors. And after the numerical formulation was obtained, we get the relationship curves of every factors and water transfer efficiency. That’s spherical generation time increases with the increase of the battery working current, the time of the water through the tortuous capillary increases with the increase of the diffusion layer thickness, decreases with the increase of pipe diameter.
After the determination of various specific factors on transfer to the impact of trend and gradient, according to the two parts of the calculated water transfer process, we can also calculate the water transfer total time of each cycle, and according to calculation result, due to the longer time between spherical droplets generated, the time of passing through tortuous capillary can be neglected compared. That is to say, after the water drop generating, the drop along the pipeline will be available smooth outgoing without staying. So two part of time can be added directly, without mutual influence. So in order to study if it could occur at the flooding phenomenon in the cell passage, we give up the previous vertical channel model, and re establish the cell model of horizontal flow opening passage. Finally, we successfully calculated critical air flow in the model of fuel cell at each excess coefficient and current density. So we get the conclusion that when the air flow is more than the critical air flow, the water transfer process is smooth. When the air flow is less than the critical air flow, we will see the flooding phenomenon. That would be a reasonable reference to the water flood prevention and avoiding of the flooding phenomena.
Key words: Proton Exchange Membrane; dead-ended; water transfer; flow channel
目 录
摘 要 I
Abstract II
目 录 1
第1章 绪论 1
1.1引言 1
1.2课题背景 2
1.2.1氢氧燃料电池的应用 2
1.2.2燃料电池结构 3
1.2.3 质子交换膜燃料电池的工作原理 4
1.3 文献综述 5
1.3.1 PEMFC的水气分布特性 5
1.3.2 PEMFC的水分迁移特性 7
1.4本论文选题目的和拟解决的问题 8
第2章 关于PEMFC中水滴球冠的生成 10
2.1 PEMFC中水滴球冠生成时间的推导 10
2.2 PEMFC中水滴球冠生成时间的计算 11
2.3 计算结果分析 13
2.4 本章小结 14
第3章 关于PEMFC中水滴穿过弯曲毛细管的过程 15
3.1 PEMFC中水滴穿过弯曲毛细管时间的推导 15
3.2 PEMFC中水滴穿过弯曲毛细管时间的计算 16
3.2.1 不同扩散层厚度下的水传输时间计算 16
3.2.2 不同孔径下的水传输时间计算 18
3.3 计算结果分析 20
3.3.1 分析不同扩散层厚度对水传输时间的影响 20
3.3.2 实验结果及讨论分析不同孔径对水传输时间的影响 20
3.4本章小结 20
第4章 开口燃料电池水平流道中关于临界流量的研究 22
4.1 开口燃料电池水平流道中的临界风力推导 22
4.2 开口燃料电池水平流道中的临界风力计算 24
4.3 本章小结 27
第5章 总结与展望 28
5.1结论 28
5.2课题展望 29
参考文献 30
致 谢 33
第1章 绪论
1.1引言
早在20世纪70年代,化石能源大量开发,人均物质消耗量日益增大,当时人们就已意识到,不但化石燃料燃烧产生的污染物对人类生活会造成巨大的危害,而且据估测,大约一百年之后,资源将会枯竭。为此,越来越多的人开始迈入新能源领域。而氢能源,则成为了炙手可热的研究对象。目前氢能源有75%的量通过物理、化学、生物等方法制取,使得人们打开了新世纪的大门。它具体表现在从量上来说,其资源丰富,取之不尽,用之不竭;从效率来说,相比同质量的石油、煤矿、天然气等传统烃类物质相比,其所能释放的能量可达到前者的数倍;而从环保角度来说,氢气燃料的生成物只有水,更可谓是当之无愧的清洁能源。虽然技术与成本上仍有较大的提升空间,但在能源与资源的合理开发和有效利用方面,结合其完全环保的前提,无出其右,燃料电池可称得上其必经之路。并且随着研究的一步步深入,人们相信,氢能源将会成为人类未来的主要能源。从发展的现阶段来看,目前燃料电池(Fuel Cell)在氢能源利用的领域中处于领跑地位。
有人预言:21世纪是以氢作为主要能量载体的氢能的时代,而作为一种可直接将化学能转换成电能的电化学发电装置,燃料电池技术的研究和开发备受各国政府与企业的重视,其中以氢气为燃料的质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)具有效率高、低噪音、零污染、负载连续运行可靠等一般特点,其发展和应用前景尤其被看好[1,2]。从能量转化的角度看,燃料电池与一般电池并无异样,都是将化学能转化为电能,但其本质大不相同。一般电池只是简单地将能量存储在电池内部,相比之下,燃料电池则复杂很多。本文研究的质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)即是通过外界不断供给的氢气和氧气产生电化学反应,并通过复杂的能量转化,从而将化学能转化为电能。因此燃料电池若要正常稳定地运行,它需要一套完整的燃料电池动力系统。