TEG集成设计与仿真分析毕业论文
2021-05-11 20:58:21
摘 要
目前汽车保有量逐年增加,能源危机却越来越严重,环境也在日益恶化,节能减排技术的研究已经越来越被重视。汽车尾气能量密度低、气流速度快,使用传统的热能回收装置无法有效的对尾气中的热量回收利用,而基于温差发电技术的TEG(thermoelectric generation)系统能够将尾气中的废热转化为电,且具有结构能简单、无噪声、无污染的特点,吸引了众多国内外汽车公司的注意力。但是目前研制出的TEG系统均是直接加装到尾气排气系统中,存在占用空间过大、产生背压过大以及与排气系统兼容性差等问题。
本文总结分析了国内外对于TEG系统的研究状况和汽车排气消声器的工作原理,提出一种TEG系统与排气消声器集成的设计方案。以抗性消声器为原型,把其圆筒状外形改进为正十二边形的圆柱,以便于布置热电模块,将改进后的消声器作为TEG系统的热源。这种新型设计不仅能够吸收热能,还能够起到消声的作用,使空间以及材料得到了充分利用。
从TEG系统废热回收的角度出发,分析集成式废热通道的温度场和压力场的分布是否满足要求。使用ANSYS ICEM CFD对模型进行网格划分,利用流体仿真软件FLUENT进行仿真计算,分析其温度变化、压力变化以及速度变化的状况,在不同的工况下,集成式废热通道的壁面温度分布较均匀,产生的背压也在允许范围内,可以满足使用要求。
为了提高集成式废热通道壁面温度,对通道进行优化设计,在通道内部加装翅片,增大排气废气与通道壁面的接触面积,对优化模型进行仿真分析,结果表明,优化后通道壁面温度整体提升了10K左右,同时排气背压并没有增加,有利于TEG系统热能回收效率的提高。
本文提出的TEG集成系统的设计方案,能够有效的简化TEG系统,同时提高其与排气系统的兼容性。通过对集成式废热通道的仿真分析,从理论上说明了设计的可行性。
关键词:TEG系统,集成式废热通道,排气消声器,仿真分析
Abstract
At present, the number of cars increases year by year, and the energy crisis is getting more and more serious, and the environment is getting worse, so the research of energy saving and emission reduction technology has been more and more attention. The low energy density of automobile exhaust gas flow rate is fast, the use of traditional heat energy recovery device cannot effectively on the exhaust heat recovery and utilization. Based on thermoelectric generation technology of TEG (thermoelectric generation) system can exhaust waste heat into electricity and has the advantages that the structure is simple, no noise, no pollution characteristics, which has become hot research of domestic and foreign automobile company. But the developed TEG system is directly added to the exhaust system today, and there is too much space occupied, too much back pressure and poor compatibility with the exhaust system and so on.
This paper summarizes and analyzes the research status of TEG system at home and abroad and the working principle of the automobile exhaust muffler, and then puts forward an integrated design scheme of TEG system and exhaust muffler. According to the resistance muffler, the cylindrical shape is improved to a cylindrical shape with twelve sides in order to facilitate the arrangement of the thermoelectric module, and then the improved muffler is used as the heat source of the TEG system. The new design can not only absorb the heat energy, but also can play the role of noise elimination, so that the space and the material are fully utilized.
This paper starts from the angle of waste heat recovery TEG system and analysis of temperature field and pressure field of integrated heat channel whether to meet the requirements. ICEM CFD ANSYS was used to mesh the model, and the simulation calculation was carried out by using fluid simulation software FLUENT, and then analysis of the temperature field, pressure field and velocity field distribution under different conditions. The integrated waste heat channel of the wall temperature distribution is uniform, back pressure also is in the allowable range, which can meet the use requirements.
In order to improve the integrated waste heat channel wall temperature, the channel is of optimal design. The fins are added in the channel to increase the contact area between the exhaust gas and the wall surface of the channel. The optimization model is simulated and analyzed. The results show that the temperature of the channel wall is improved by 10K or so, and the exhaust back pressure is not increased, which is beneficial to the improvement of the heat recovery efficiency of TEG system.
The design scheme of TEG integrated system is proposed in this paper, which can simplify the TEG system effectively, and improve the compatibility between the system and the exhaust system. Through the simulation of integrated heat channel analysis, theoretically proved the feasibility of the design.
Key Words:TEG system, integrated heat channel, exhaust muffler, simulation analysis
目 录
摘 要 I
Abstract II
第1章 绪论 1
1.1 选题背景及意义 1
1.2 国内外研究现状 2
1.2.1 温差发电材料的研究现状 2
1.2.2 温差发电技术的研究现状 3
1.2.3 消声器的研究现状 5
1.3 主要研究内容及目标 6
1.3.1 研究的基本内容 6
1.3.2 研究设计的目标 6
第2章 TEG集成系统的分析 8
2.1 TEG系统的工作原理及组成 8
2.1.1 TEG系统的基本原理 8
2.1.2 TEG系统的组成 10
2.2 排气消声器的基本理论 13
2.2.1 排气噪声产生原因及控制 13
2.2.2 排气消声器的分类 14
2.2.3 消声器的评价方法 17
2.3 本章小结 18
第3章 TEG集成系统的设计 19
3.1 现有的TEG系统存在的不足 19
3.2 TEG系统的集成设计 19
3.2.1 消声器的改进 20
3.2.2 TEG系统其它部分的设计 20
3.3 本章小结 22
第4章 集成式TEG系统的仿真分析 23
4.1 计算流体力学的基本理论 23
4.2 网格单元及仿真软件的介绍 25
4.2.1 网格单元的介绍 25
4.2.2 FLUENT软件介绍 27
4.3 TEG集成系统的前处理 27
4.3.1 仿真模型的简化处理 27
4.3.2 模型网格的划分 28
4.3.3 初始条件的设定 29
4.4 TEG系统仿真分析 29
4.4.1 温度场分析 29
4.4.2 压力场分析 31
4.4.3 速度场分析 33
4.5 本章小结 35
第5章 TEG系统的优化 36
5.1 集成式废热通道的优化与仿真分析 36
5.2 优化后的TEG系统仿真分析 37
5.2.1 温度场对比分析 38
5.2.2 压力场对比分析 39
5.2.3 速度场对比分析 41
5.3 本章小结 44
第6章 总结与展望 45
6.1全文总结 45
6.2 本文的创新点 46
6.3 不足与展望 46
参考文献 48
致 谢 50
第1章 绪论
1.1 选题背景及意义
2015年12月国家统计局公布的数据表明,截止到2015年底,中国民用汽车使用量达到1.72亿辆(其中三轮汽车以及低速货车达到0.95亿辆),私人汽车使用量达到1.44亿辆,民用轿车使用量达到0.95亿辆[1]。我国目前已经升级为全球第二大汽车保有量的国家。汽车数量越来越多,其带来的高能耗问题日益凸显。从内燃机的燃油能量消耗途径(图1.1)来看,只有30%的能量用于驱动车辆运行,大约40%的能量以尾气废热的形式排放到大气中[2]。而汽车内燃机的技术已经达到了一个瓶颈,通过改进内燃机技术来提高汽车的燃油利用率难度较大,因此回收利用这些被排放的废热是提高汽车燃油利用率、降低能耗最为有效的途径之一。