微生物源糖基转移酶催化合成珍稀人参皂苷产物的反应条件研究任务书
2020-05-04 21:37:04
1. 毕业设计(论文)的内容和要求
论文内容: 稀有人参皂苷是人参中的主要功能成分,但不同皂苷单体在药材及其提取物中量不同,其药理活性亦有差异,量低而药理活性强的皂苷单体需大量制备。
如何定向提高人参皂苷单体的量,酶法制备是解决该问题的关键技术。
依靠本实验室筛选得到的微生物来源糖基转移酶催化人参皂苷,进行功能验证和产物鉴定,并通过改变反应条件,定向合成稀有人参皂苷。
2. 参考文献
[1] Tita Ritsema, Jeanine Joling Sjef Smeekens. Patterns of fructan synthesized by onion fructan:fructan 6G-fructosyltransferase expressed in tobacco BY2 cells is fructan: fructan 1-fructosyltransferase needed in onion [J].New Phytologist, 2003, 160: 61-67 [2] 杨金玲, 高丽丽, 朱平. 人参皂苷生物合成研究进展[J]. 药学学报, 2013(2):170-178. [3] Jia L, Zhao Y. Current evaluation of the millennium phytomedicine-ginseng (I): Etymology, pharmaco-gnosy, phytochemistry, market and regulations [J]. Curr Med Chem, 2009, 16(19): 2475-2484. [4] 梁会超, 王庆华, 巩婷, et al. 人参皂苷生物合成相关糖基转移酶研究基本策略及进展[J]. 药学学报, 2015(2):148-153. [5] 陈利平,韩亚伟,毛多斌,等.枯草芽胞杆菌果糖基转移酶基因的克隆及其序列分析[J].河南农业大学学报,2009,4(43):432-436 [6] 张南生, 张秀华, 李文峰. 人参皂苷Rg3的研究进展[J]. 医药导报, 2006, 25(7):687-689. [7] Rare ginsenoside Ia synthesized from F1 by cloning and overexpression of the UDP-glycosyltransferase gene fromBacillus subtilis: synthesis, characterization, andin vitromelanogenesis inhibition activity in BL6B16 cells[J]. Journal of Ginseng Research, 2018, 42(1):42-49. [8] Quan L H, Min J W, Jin Y, et al. Enzymatic biotransformation of ginsenoside Rb1 to 20 (S)-Rg3 by recombinant β-glucosidase from Microbacterium esteraromaticum [J]. Appl Microbiol Biotechnol, 2012, 94(2): 377-384. [9] Keegstra K, Raikhel N. Plant glycosyltransferases. Current opinion in plant biology, 2001,4(3):219~224.6 Coutinho PM, Deleury E, Davies GJ, et al. An evolving hierarchical family classification for glycosyltransferases. Journal of molecular biology,2003, 328(2):307~317. [10] Zhao L G, Xie J C, Zhang X S, et al. Over expression and characterization of a glucose-tolerant-glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd [J]. J Mole Cataly B: Enzym, 2013, 95: 62-69. [11] Zhao X S, Gao L, Wang J, et al. A novel ginsenoside Rb1-hydrolyzing β-D-glucosidase from Cladosporium fulvum [J]. Process Biochem, 2009, 44(6): 612-618. [12] Fukuchi-Mizutani M, Okuhara H, Fukui Y, et al. Biochemical and molecular characterization of a novel UDP-glucose: anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant physiology, 2003, 132(3):1652. [13] Jones P, Vogt T. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta, 2001, 213(2):164~174. [14] Poppenberger B, Berthiller F, Lucyshyn D, et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP #8211;glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry,2003, 278(48):47905~47914. [15] Zagrobelny M, Bak S, Rasmussen AV, et al. Cyanogenic glucosides and plant-insect interactions. Phytochemistry, 2004, 65(3):293~306. [16] Cheng L Q, Kim M K, Lee J W, et al. Conversion of major ginsensodie Rb1 to ginsenoside F2 by Caulobacter leidyia [J]. Biotechol Lett, 2006, 28(14): 1121-1127. [17] Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. The Plant Cell, 2004, 16(8):2117. [18] Bowles D, Isayenkova J, Lim EK, et al. Glycosyltransferases: managers of small molecules.Current opinion in plant biology,2005, 8(3):254~263. [19] Liu L, Zhu X M, Wang Q J, et al. Enzymatic preparation of 20 (S, R)-protopanaxadiol by transformation of 20 (S,R)-Rg3 from black ginseng [J]. Phytochemistry, 2010, 71(13): 1514-1520. [20] Quan L H, Wang C, Yang J, et al. Isolation and characterization of novel ginsenoside-hydrolyzing glycosidase from Microbacterium esteraromaticum that transforms ginsenoside Rb2 to rare ginsenoside 20 (S)-Rg3[J]. Antonie Leeuwenhoek, 2013, 104(1): 129-137.
3. 毕业设计(论文)进程安排
起讫日期 设计(论文)各阶段工作内容 备 注 2018.12.26-2019.1.16 文献查阅,完成开题报告,熟悉仪器 2019.3.1--2019.3.30 糖基转移酶的功能验证 2019.4.1--2019.4.30 稀有人参皂苷产物的鉴定 2019.5.5---2019.5.29 反应条件优化 2019.5.30---2019.6.6 撰写毕业论文