来源于新疆极端微生物的类胡萝卜素发酵条件的探索任务书
2020-07-01 20:48:33
1. 毕业设计(论文)的内容和要求
1.文献查阅 掌握文献查阅的一般方法,学会使用计算机在中国期刊网,维普数据库,超星数字图书馆,elsevier、ncbi电子期刊,springer link全文电子期刊,pubmed等检索资源上查阅关于类胡萝卜素、极端微生物等方面的相关文献。
2.文献阅读及综述 阅读与课题相关的外文及中文文献,了解国内外的研究动态,撰写文献综述。
3.明确实验任务,拟定实验方案 根据所查阅文献的内容,确定实验内容及方案,拟定科学可行的研究计划。
2. 参考文献
[1] K. Paramasivan, S. Mutturi, Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae. Critical Reviews in Biotechnology (2017) 1-16. [2] 王昆,马玲云,吴先富,肖新月. 番茄红素的研究进展 [J]. 中国药事,2015, 3(29): 266-271. [3] 龚平,阎建全. 番茄红素的研究进展 [J]. 食品与发酵工业,2008, 34(5): 143-147. [4] 张希波,刘洪海,张晓丽,等. 番茄红素化学合成的研究进展 [J]. 西北药学杂志,2009,24(1): 78-80. [5] Reyes L H, Gomez J M, Kao K C. Improving carotenoids production in yeast via adaptive laboratory evolution[J]. Metabolic engineering, 2014, 21: 26-33. [6] Shi F, Zhan W, Li Y, et al. Temperature influences β-carotene production in recombinant Saccharomyces cerevisiae expressing carotenogenic genes from Phaffia rhodozyma[J]. World Journal of Microbiology and Biotechnology, 2014, 30(1): 125-133. [7] Hern#225;ndez-Almanza A, Montantilde;ez J, Mart#237;nez G, et al. Lycopene: Progress in microbial production[J]. Trends in Food Science Technology, 2016, 56: 142-148. [8] Xie W, Ye L, Lv X, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J]. Metabolic engineering, 2015, 28: 8-18. [9] Li Q, Sun Z, Li J, et al. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering[J]. FEMS microbiology letters, 2013, 345(2): 94-101. [10] Chen Y, Xiao W, Wang Y, et al. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering[J]. Microbial Cell Factories, 2016, 15(1): 113. [11] Lian J, Jin R, Zhao H. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration[J]. Biotechnology and bioengineering, 2016, 113(11): 2462-2473. [12] Bahieldin A, Gadalla N O, Al-Garni S M, et al. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter[J]. Plasmid, 2014, 72: 18-28. [13] Shi M Y, Liu Y, Wang D, et al. Construction of Saccharomyces cerevisiae cell factories for lycopene production[J]. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica, 2014, 39(20): 3978-3985. [14] Verwaal R, Wang J, Meijnen J P, et al. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous[J]. Applied and environmental microbiology, 2007, 73(13): 4342-4350. [15] Nacken V, Achstetter T, Degryse E. Probing the limits of expression levels by varying promoter strength and plasmid copy number in Saccharomyces cerevisiae[J]. Gene, 1996, 175(1): 253-260. [16] 徐加莉, 左思仪, 谢承佳, 江凌, 李霜, 黄和, 徐娴, 番茄红素基因工程菌多酶调控研究进展. 生物工程学报 33 (2017) 552-564. [17] Y. Luo, B.Z. Li, D. Liu, L. Zhang, Y. Chen, B. Jia, B.X. Zeng, H. Zhao, Y.J. Yuan, ChemInform Abstract: Engineered Biosynthesis of Natural Products in Heterologous Hosts. Chemical Society Reviews 44 (2015) 5265. [18] S.F. Eauclaire, J. Zhang, C.G. Rivera, L.L. Huang, Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9. Journal of Industrial Microbiology Biotechnology 43 (2016) 1001. [19] K. Kuranda, J. Franccedil;ois, G. Palamarczyk, The isoprenoid pathway and transcriptional response to its inhibitors in the yeast Saccharomyces cerevisiae. Fems Yeast Research 10 (2010) 14-27. [20] W. Xie, L. Ye, X. Lv, H. Xu, H. Yu, Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metabolic Engineering 28 (2015) 8.
3. 毕业设计(论文)进程安排
2017.12.20-2018.1.9 文献查询和资料阅读 2018.1.9-2018.1.16 研究方案制定和开题报告写作 2018.1.16-2017.2.25 实践内容的准备 2018.2.25-2018.5.10 实践 2018.5.10-2018.5.15 实践内容处理与结果分析 2018.5.16-2018.6.1 毕业论文书写