γ-氨基丁酸与大豆组分中不同糖反应性研究任务书
2022-01-08 22:18:19
全文总字数:2006字
1. 毕业设计(论文)的内容、要求、设计方案、规划等
(1)前言:理解γ-氨基丁酸结构与功能性质,特别是其在食品体系中与食品组分间潜在的相互作用;综述在γ-氨基丁酸作为食品功能性因子的角色,与食品组分相互作用,特别是与大豆组分中的糖类物质潜在的反应。
尝试论证当前研究的目的及意义。
(2)方案拟定:在实验开展之前,请设计实验技术路线、模拟豆乳加工条件(即加工温度、体系的ph及加工时间),在此条件下将γ-氨基丁酸与大豆组分中的三种主要的糖反应,通过测定γ-氨基丁酸损失率、反应体系的420 nm处吸光度和质谱分析,以确定γ-氨基丁酸与糖之间的反应性。
2. 参考文献(不低于12篇)
1. Qulez, J.; Diana, M. Gamma-aminobutyric acid-enriched fermented foods. In: Fermented Foods in Health and Disease Prevention. Frias, J.; Martinez-Villaluenga, C.; Peas, E. (Eds). Academic Press, 2017.2. Diana, M.; Qulez, J.; Rafecas, M. Gamma-aminobutyric acid as a bioactive compound in foods: a review. J. Funct. Foods. 2014, 10, 407420. 3. Jia, X.; Chen, M.; Wan, J. B.; Su, H.; He, C. Review on the extraction, characterization and application of soybean polysaccharide. RSC Adv. 2015, 5, 7352573534. 4. Tressl, R.; Wondrak, G.; Kersten, E. Structure and potential cross-linking reactivity of a new pentose-specific maillard product. J. Agric. Food Chem. 1994, 42, 26922697.5. Lamberts, L.; Rombouts, I.; Delcour, J. A. Study of nonenzymic browning in α-amino acid and γ-aminobutyric acid/sugar model systems. Food Chem. 2008, 111, 738744.6. Iglesias, M. T.; Lvarez, P. J. M.; Polo, M. C.; de Lorenzo, C.; Gonzalez, M.; Pueyo, E. Changes in the free amino acid contents of honeys during storage at ambient temperature. J. Agric. Food Chem. 2006, 54, 90999104.7. Cao, Y. Y.; Xiong, E. M.; True, A. D.; Xiong, Y. L. The pH-dependent protection of α-galactosidase activity by proteins against degradative enzymes during soymilk in vitro digestion. LWT-Food Sci. Technol. 2016, 69, 244250.8. Wang, Y. S.; Liu, M. Y.; Zhao, L. M.; Qiu, Q. J.; Zhuang, Y. P. Influence of processing conditions on reducing γ-aminobutyric acid content during fortified milk production. Food Res. Int. 2015, 72, 215222.