芴酮类功能凝胶分子的设计合成及光学性质研究毕业论文
2022-03-13 22:12:50
论文总字数:22649字
摘 要
分子凝胶,它是一种软物质,由于其受温度、超声等外界条件的变化时能够实现肉眼可见的流动性的溶胶相和非流动性的凝胶相之间的相互转变,近些年来受到了广大科研工作者的关注与研究。分子凝胶作为能够感知外界条件变化的智能材料,它在太阳能电池、工业催化、分子识别和信息存储等领域具有广泛的应用。
众所周知,大多数的超分子凝胶通常由两部分组成,即溶剂和辅助基团(凝胶因子)。典型的凝胶因子包括:长的烷基链、酰胺基、氨基酸、脲结构和胆固醇类。本论文的工作主要是以芴酮作为吸电子核心、苯基作为桥联基团、三个十二烷氧碳链取代的苯甲酰胺作为末端供电子基团和自组装过程的辅助基团,设计合成了两个新颖的推拉电子构型的分子。首先,芴酮作为吸电子核心,末端通过π桥连接强的供电子基团制备的化合物已经被证明是一类光电性能优良的材料,其次芴酮类衍生物由于羰基氧上的孤对电子和芳环上的氢能形成分子间的氢键,在分子自组装中能够发挥重要作用;而作为辅助基团的十二烷氧碳链取代的苯甲酰胺在分子的自组装过程中也起到重要作用。
本文设计合成了两个目标分子SOF(3,4,5-三(十二烷氧基)-N-[4-(9-氧代-9H-芴-2-基)苯基]苯甲酰胺)和DOF(N,N’-[(9-氧代-9H-芴-2,7-二基)双(4,1-亚苯基)]双(3,4,5-三(十二烷氧基)苯甲酰胺)。通过核磁等分析手段对两分子进行结构表征,确认其结构与预期相符。在此基础上,对它们的光物理性质和凝胶性质进行了测试。通过紫外光谱可以发现,SOF和DOF在270-370nm分别有两个强的吸收带,可以归结为1π-π*跃迁。在400-500nm处的吸收峰可以归结为末端供电子辅助基团到中间吸电子芴酮的分子内电荷转移(1ICT)。对DOF和SOF的量化计算研究中,对HOMO和LUMO的电子分布研究。发现HOMO电子分散在芴酮、苯桥连基团、羰基和末端辅助基团上,LUMO电子主要集中于芴酮上。目标化合物SOF和DOF在THF溶液(1×10-5 M)在550nm左右具有荧光发射。化合物DOF相比于SOF有15nm的红移,原因为分子内的电荷转移激发态;另一方面也说明化合物DOF相比于SOF来说具有更大π共轭结构。在对目标分子凝胶性质的研究中发现,所有的目标化合物都能在指定的溶剂中形成凝胶,但形成凝胶的能力有所差异。DOF末端由于连接了两个辅助基团使得它形成凝胶的能力要好于只有一个辅助基团取代的SOF。
关键词:芴酮 凝胶分子 合成 性质
Design, Synthesis and Optical Properties of Fluorenone Functional Gel Molecules
ABSTRACT
Molecular gel is a soft material which can realize mutual transition between visible and non-flowable sol phase to a gel phase because of its fluidity by changes in ambient conditions such as temperature, ultrasound and so on. In recent years, it has been the concern of scientific researchers. As a smart material capable of sensing changes in external conditions, molecular gels have a wide range of applications in solar cells, industrial catalysis, molecular recognition and information storage.
It is well known that most supramolecular gels are usually composed of two parts, the solvent and the auxiliary group (gel factor). Typical gel factors include long alkyl chains, amide groups, amino acids, urea structures, and cholesterol. In this paper, we designed and synthesized novel two electronic push-pull configuration molecule. The fluorenone was used as the electron acceptor core, phenyl as bridging group, three dodecane carbon chain-substituted benzamide as the terminal electron donor and self-assembly process of the auxiliary group. Firstly, the compound prepared by linking a strong electron donating group at the terminal via a π bridge have proven to be a class of excellent optical material. Secondly, the fluorenone derivatives can play an important role in the molecular self-assembly because of the hydrogen bonding between the carbon atoms on the carbonyl oxygen and the hydrogen energy on the aromatic ring. As an auxiliary group the dodecanoic acid chain substituted benzamide also plays an important role in the self-assembly process of the molecule
In this paper, two target molecules SOF (3,4,5-tris(dodecyloxy)-N-[4-(9-oxo-9H-fluoren-2-yl)phenyl] benzamide) and DOF (N,N'-[(9-oxo-9H-2,7-diyl)bis(4,1-phenylene)]bis(3,4,5-tris(dodecyl Oxy) benzamide). The structure of two target molecules were confirmed by NMR. Then their photophysical properties and gel properties were tested. SOF and DOF have two strong absorption bands at 270-370nm by UV spectroscopy, which can be attributed to 1π-π* transition. Absorption peak at 400-500nm can be attributed to intermolecule charge transfer (1ICT) from electron donating groups to the molecule electron withdrawing fluorenone. It was found that HOMO electrons were dispersed on fluorenone, benzene bridged group, carbonyl group and terminal auxiliary group, and LUMO electrons were mainly concentrated on fluorenone studied by the electron distribution of HOMO and LUMO in Quantitative Computing of DOF and SOF. Target compounds of SOF and DOF exhibit fluorescence emission around 550nm in THF (1×10-5 M). Compared to SOF, DOF has a red shift of 15 nm due to a larger π-conjugated structure in the molecule. The gel test shown that all the target compounds were able to form a gel in a given solvent, but the ability to form a gel was different. The ability of the DOF to form a gel is better than that of only one auxiliary group-substituted SOF.
Key Words: Fluorenone;Gel molecules;Synthesis;Optical property
目 录
摘要 I
ABSTRACT III
第一章 文献综述 1
1.1分子凝胶的概念 1
1.2分子凝胶的分类 1
1.2.1 对热刺激响应的凝胶 1
1.2.3对声刺激响应的凝胶 3
1.3分子凝胶的应用 4
1.3.1 手性识别 4
1.3.2 太阳能电池 5
1.3.3 药物缓释 6
1.4本课题的内容和意义 7
第二章 芴酮类功能凝胶分子的合成 8
2.1引言 8
2.2实验部分 8
2.2.1吸电子核心中间体的合成 9
2.2.2凝胶因子(辅助基团)的合成 11
2.2.3目标产物的合成 12
2.3 本章小结 13
第三章 芴酮类功能凝胶分子的光物理性质与凝胶性质 15
3.1 引言 15
3.2 紫外-可见吸收光谱 15
3.3 量化计算 16
3.4 荧光发射光谱 17
3.5凝胶性质 17
3.6 本章小结 19
第四章 结论与展望 20
4.1结论 20
4.2展望 20
参考文献 22
附录 24
请支付后下载全文,论文总字数:22649字