酿酒酵母S-腺苷甲硫氨酸合成与ATP供给的代谢改造与适配性研究毕业论文
2022-02-22 20:22:16
论文总字数:18387字
摘 要
S-腺苷甲硫氨酸存在于所有生物体内中,是由L-甲硫氨酸和ATP经过S-腺苷甲硫氨酸合成酶合成的,在一系列代谢反应中用作活化的基团供体,目前对它的临床需求不断增加,但国内大部分是靠国外供应。与其化学合成和酶催化生产相比,S-腺苷甲硫氨酸的微生物生产对于工业应用是可行的,但因菌种自身限制使其产量很难增长。本课题将安全可靠的酿酒酵母进行S-腺苷甲硫氨酸合成酶的过表达,另外考察了前体ATP的添加对S-腺苷甲硫氨酸产量的影响。最终相对于初始菌,重组菌的酶活提高6.9%,产量提高12%。考察了前体ATP的添加使得产量增加,因此从三羧酸循环角度考虑添加柠檬酸钠、醋酸钠等,考察对S-腺苷甲硫氨酸的影响,结果使产量有一定增长。
关键词:S-腺苷甲硫氨酸 酿酒酵母 ATP S-腺苷甲硫氨酸合成酶
SAM synthesis of Saccharomyces cerevisiae and metabolic
regulation of ATP supply
ABSTRACT
S-adenosylmethionine is exists in all organisms and is synthesized by L-methionine and ATP via S-adenosylmethionine synthase and used as a activated group donor in a series of metabolic reactions, the current clinical demand for it is increasing, but most of the domestic rely on foreign supply. Microbial production of S-adenosylmethionine is feasible for industrial applications compared to its chemical synthesis and enzyme-catalyzed production, but it is difficult to increase its production due to strain limitation. In this study, the overexpression of S-adenosylmethionine synthase was carried out on safe and reliable Saccharomyces cerevisiae, and the effect of the addition of precursor ATP on S-adenosylmethionine production was investigated. In the end, the activity of S-adenosylmethionine synthase increased 6.9% and the yield increased by 12% compared with the original strain. It was observed that the addition of precursor ATP also increased the production. Therefore, it was considered that the addition of sodium citrate, sodium acetate and the like was considered from the viewpoint of tricarboxylic acid cycle. The effect of S-adenosylmethionine on the production was increased.
Keywords: S-adenosylmethionine; S-adenosylmethionine synthase; Saccharomyces cerevisiae; ATP
目 录
摘要 I
ABSTRACT II
第一章 前言 1
1.1 S-腺苷甲硫氨酸 1
1.1.1 S-腺苷甲硫氨酸的理化性质 1
1.1.2 S-腺苷甲硫氨酸生物学功能 1
1.1.3 S-腺苷甲硫氨酸的临床应用 2
1.1.4 S-腺苷甲硫氨酸的生产方法 2
1.1.5 发酵法研究进展 3
1.2 酿酒酵母作为出发菌株的原因 5
1.3 ATP 5
1.3.1 ATP的性质与功能 5
1.3.2 ATP与S-腺苷甲硫氨酸 6
1.4 研究目的与意义 6
1.5 研究内容 6
第二章 实验与方法 7
2.1 菌株与质粒 7
2.2 实验试剂与仪器 8
2.2.1 实验试剂 8
2.2.2 仪器与器具名称 9
2.3 实验方法 9
2.3.1 培养基 9
2.3.2 培养方法 10
2.3.3 SAM合成酶的克隆表达 10
2.4 确定ATP对SAM产量的影响 16
2.4.1 ATP的添加量对SAM产量和酶活的影响 16
2.4.2 醋酸钠、柠檬酸钠对SAM产量的影响 16
2.5 检测方法 17
2.5.1 蛋白浓度测定 17
2.5.2 SAM合成酶酶活测定 17
2.5.3 ATP的产量测定 18
2.5.4 SAM的产量测定 18
第三章 结果与分析 16
3.1 重组质粒的构建 16
3.2 重组质粒验证 17
3.3 蛋白SDS-PAGE 检测 18
3.4 蛋白浓度测定 18
3.5 SAM合成酶酶活测定 19
3.6 SAM的产量测定 19
3.7 确定ATP对SAM产量的影响 20
3.8 ATP产量的比较 20
第四章 结论 24
第五章 展望 25
参考文献 26
致谢 26
第一章 前言
1.1 S-腺苷甲硫氨酸
S-腺苷甲硫氨酸(英文名为S- adenosylmethionine,简称SAM),又名S-腺苷蛋氨酸。首次由意大利人坎托尼 (Cantoni G.L.)【1】在1952年发现的,是一种生理活性物质,它在动植物和微生物体内广泛存在,它具有非常重要的生理功能,在人体内参与几十种生化反应【2】。
1.1.1 S-腺苷甲硫氨酸的理化性质
请支付后下载全文,论文总字数:18387字