生物油的制备及其检测分析毕业论文
2022-02-22 19:56:30
论文总字数:20965字
摘 要
我国长期受困于能源危机和环境问题,而生物质能是一种几乎无污染的可再生的清洁能源,且我国生物质资源极其丰富。因此,对我国来说,通过热解生物质制备生物油,既能减少使用化石能源又能保护环境。
本课题旨在制备高产率、高品性的生物油,并对其进行检测分析。首先阐述了生物质的特质以及热解定义、热解机理和热解装置,随后对生物质热解过程中主要操作条件对生物质热解及其产物分布组成和产油率的影响进行研究。利用小试装置管式炉、以木屑为原料进行热解,得出木屑的最佳热解工况:热解温度为540 °C,进料速度为1 kg/h,原料粒径为1.6~2.5 mm,并在持续通入氮气的情况下,生物油产率达到最高,为34.8%。其次对生物质和生物油进行检测,简述了目前国内外主流的检测分析手段,如红外光谱、气相色谱、气相色谱-质谱联用技术,在生物油有机小分子化合物结构表征方面的应用,并且评价了这些检测分析技术的优缺点以及在分析生物油理化性质和化学组成方面的影响。对生物质木屑进行了工业分析、元素分析以及成分分析,分析结果表明木屑是一种较合适热解的生物质原料。然后对生物油进行了物性分析和化学分析。物性分析结果:酸度约为6.30~8.00 (KOH)/(mg/g),灰分不足0.10%,固体含量不足0.26%,密度约为1.05 g/mL,含水量约为55.00%,碘值约为17.63 g碘/100 g生物油。化学分析结果:GC分析仅证明生物油组分繁杂;而GC-MS分析则表明生物油中含各种含氧化合物。生物质热解液化技术与工艺的发展越来越成熟,为了实现生物质快速热解的工业化,就要不断放大快速热解装置以提高处理量。生物质热解装置主要由进料系统、主反应器、气固分离装置和冷凝装置组成。生物质快速热解装置复杂且多样化,在装置的放大过程中,各系统的合理选择是难点。根据此次小试的实验结果,对生物质热解设备进行扩大设计。重点阐述了主反应器和旋风分离器的特点,并进行了设计计算,最终完成了一套处理量为20 kg/h的热解装置和流程的设计。
关键词:生物油 影响因素 检测分析 扩大设计
Preparation and Detection of Bio-oil
Abstract
China has long been trapped in energy shortages and environmental pollution, while biomass is a kind of energy which almost brings no pollution, and our biomass resources are extremely rich. Therefore China turns to biomass pyrolysis which can not only reduce fossil energy use but also protect the environment.
The purpose of this project is to prepare high-yield and high-quality bio-oil, and then to analyze its characterization. Firstly the characteristics of biomass pyrolysis and the definition, mechanism and devices of pyrolysis were described. Then sawdust was used to research the influence factors of bio-oil yield and its product composition in the tube furnace. When the pyrolysis temperature was 540 °C, the feed rate was 1 kg/h, the raw material particle size was 1.6~2.5 mm, and in the case of continuous nitrogen flow, the yield of bio-oil reached the highest which was 34.8%. Secondly the characterization of biomass and bio-oil was analyzed. The application of current detection and analysis methods, such as FT-IR, GC and GC-MS, was used in chemical structure characterization of the small organic molecules. The advantages and disadvantages of these techniques and the effects of analyzing the physical properties and chemical composition of bio-oil were evaluated. The industrial analysis, elemental analysis and composition analysis of the biomass sawdust were carried out, and the results showed that sawdust was a kind of biomass material which was suitable for pyrolysis. The bioassay was then analyzed for physical properties and chemical analysis. The results showed that the acidity was about 6.30~8.00 (KOH)/(mg/g), the ash content was less than 0.10%, the solid content was less than 0.26%, the density was about 1.05 g/mL, the water content was about 55.00%, and the iodine value was about 17.63 g iodine/100 g bio-oil. GC analysis only showed that the bio-oil composition was complex, while GC-MS analysis showed that there were more oxides in the bio-oil. The development of biomass pyrolysis liquefaction technology are more and more mature. In order to achieve rapid industrialization of biomass pyrolysis, the rapid pyrolysis device should be enlarged constantly to improve the handling capacity. The biomass pyrolysis unit consists a feed system, a main reactor, a gas-solid separation unit and a condensing unit. Biomass rapid pyrolysis devices are complex and diversified and the rational selection of the systems is difficult during the amplification of the device. According to the results of the lab scale test, biomass pyrolysis equipment was expanded. The characteristics of the main reactor and the cyclone were expounded, designed and calculated. Finally a set of pyrolysis devices and processes with a treatment capacity of 20 kg/h was completed.
Key Words: Bio-oil; Influencing factors; Detection analysis; Expand the design
目 录
摘 要 I
Abstract II
第一章 绪论 1
1.1 前言 1
1.2 生物质能及其优点 1
1.3 生物质热解液化技术 1
1.4 生物质快速热解装置 2
1.4.1 进料系统 2
1.4.2 主反应器 2
1.4.3 气固分离装置 3
1.4.4 冷凝系统 3
1.5 生物质热解影响因素 4
1.5.1 热解温度 4
1.5.2 升温速率 4
1.5.3 气固相停留时间 4
1.5.4 原料种类及性质 5
1.6 生物油的检测分析 5
1.6.1 理化性质分析 5
1.6.2 元素分析 5
1.6.3 FT-IR官能团测定 6
1.6.4 GC-MS成分分析 6
1.7 本课题的研究内容 6
第二章 影响产油率的因素以及检测分析 7
2.1 生物质原料相关分析 7
2.1.1 工业分析 7
2.1.2 元素分析 7
2.1.3 成分分析 7
2.2 热解参数对产油率及产物分布的影响 8
2.2.1 热解温度 8
2.2.2 进料速度 9
2.2.3 原料粒径 9
2.3 生物油物性分析 10
2.3.1 密度 10
2.3.2 pH值和酸度 10
2.3.3 含水量 11
2.3.4 碘值 12
2.3.5 固体含量 12
2.4 生物油化学分析 14
2.4.1 气相色谱分析 14
2.4.2 气相色谱-质谱联用分析 15
2.5 本章小结 17
2.5.1 生物质原料分析 17
2.5.2 热解最佳工况 17
2.5.3 生物油分析 17
第三章 设计扩大热解装置 19
3.1 热解流程简介 19
3.1.1 热解流程图 19
3.1.2 热解过程 19
3.2 主反应器 19
3.2.1 流化速度设计 20
3.2.2 尺寸设计 21
3.2.3 热功率计算 22
3.3 气固分离装置 22
3.4 本章总结 23
第四章 结论与展望 24
4.1 结论 24
4.1.1 生物质原料分析 24
4.1.2 最佳热解工况 24
4.1.3 生物油分析 24
4.1.4 扩大热解装置流程设计 24
4.2 展望 24
参考文献 25
致 谢 28
第一章 绪论
1.1 前言
21世纪以来,全球经济迅猛发展,工业化程度越来越高,环境污染和能源短缺两大问题随之而来。一方面,化石燃料长期活跃在传统工业中,由于大量燃烧,造成严重的环境污染,危害人体健康。另一方面,我国面临能源短缺、能源结构不合理等问题,暂时仍无法摆脱对煤炭等化石燃料的依赖。
请支付后下载全文,论文总字数:20965字