希瓦氏菌的产电性能研究任务书
2020-06-06 11:03:41
1. 毕业设计(论文)的内容和要求
1.文献查阅掌握文献查阅,使用网络资源如中国期刊网、维普数据库、超星数字图书馆、elsevier电子期刊、springer link全文电子期刊等检索资源,查阅关于希瓦氏菌产电方面的相关文献。
2.文献阅读及综述 阅读与课题相关的外文与中文文献,了解国内外的研究动态,撰写文献综述。
3.明确实验任务,拟定实验方案根据所查阅文献的内容,确定实验内容及方案,拟定科学可行的研究计划。
2. 参考文献
[ 1] MacDonell M, Colwell R. Phylogeny of the Vibrionaceae, and
recommendation for two new genera, Listonella and Shewanella[J]. Systematic and Applied Microbiology, 1985, 6 ( 2) :
171-182.
[ 2] Kim B H, Kim H J, Hyun M S, et al. Direct electrode reaction of Fe( III) -reducing bacterium, Shewanella putrefaciens
[J]. Journal of Microbiology and Biotechnology, 1999, 9
( 2) : 127-131.
[ 3] Kim H J, Park H S, Hyun M S, et al. A mediator-less microbial fuel cell using a metal reducing bacterium Shewanella
putrefaciens[J]. Enzyme and Microbial Technology, 2002, 30
( 2) : 145-152.
[ 4] Ringeisen B R, Ray R, Little B. A miniature microbial fuel
cell operating with an aerobic anode chamber[J]. Journal of
Power Sources, 2007, 165( 2) : 591-597.
[ 5] Gorby Y A, Yanina S, McLean J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis
strain MR-1 and other microorganisms[J]. Proceedings of
the National Academy of Sciences,2006,103 ( 30 ) :
11358-11363.
[ 6] Watanabe K, Manefield M, Lee M, et al. Electron shuttles in
biotechnology[J]. Current Opinion in Biotechnology, 2009,
20( 6) : 633-641.
[ 7] Van der Zee F P, Cervantes F J. Impact and application of electron shuttles on the redox ( bio) transformation of contaminants: a review [J]. Biotechnology Advances,2009,27
( 30) : 256-277.
[ 8] Chen B Y, Wang Y M, Ng I S. Understanding interactive
characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri[J]. Bioresource Technology, 2011, 102( 2) : 1159-1165.
[ 9] Chen B Y, Hsueh C C, Chen W M, et al. Exploring decolorization and halotolerance characteristics by indigenous acclimatized bacteria: chemical structure of azo dyes and dose-response assessment[J]. Journal of the Taiwan Institute of
Chemical Engineers, 2011, 42( 5) : 816-825.
[ 10] Sun J, Bi Z, Hou B, et al. Further treatment of decolorization liquid of azo dye coupled with increased power production using microbial fuel cell equipped with an aerobic biocathode[J]. Water Research, 2011, 45( 1) : 283-291.
[ 11] Atlas R M. Handbook of microbiological media[M]. 3rd
ed. Boca Raton, FL, USA: CRC Press, 2004.
[ 12] Lovley D R, Phillips E J P. Novel mode of microbial energy
metabolism: organic carbon oxidation coupled to dissimilatory
reduction of iron or manganese[J] . Applied and Environmental Microbiology, 1988, 54( 6) : 1472-1480.
[ 13] Ramasamy R P, Ren Z, Mench M M, et al. Impact of initial
biofilm growth on the anode impedance of microbial fuel
cells[ J] . Biotechnology and Bioengineering, 2008, 101( 1) :
101-108.
[ 14] Chen B Y, Liu H L, Chen Y W, et al. Dose-response assessment of metal toxicity upon indigenous Thiobacillus thiooxidans BC1 [J]. Process Biochemistry,2004,39 ( 6 ) :
737-748.
[ 15] Chen B Y, Wu C H, Chang J S. An assessment of the toxicity of metals to Pseudomonas aeruginosa PU21 ( Rip64)
[J]. Bioresource Technology, 2006, 97( 6) : 1880-1886.
[ 16] Rodricks J V. Calculated risks: understanding the toxicity
and human health risks of chemicals in our environment
[M ]. Cambridge, England: Cambridge University
Press, 1992.
[ 17] Chen B Y. Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics
[ J] . Process Biochemistry, 2002, 38( 4) : 437-446.
#183; 114 #183;
厦门大学学报( 自然科学版) 2014 年
[ 18] Leudeking R, Piret E. A kinetic study of the lactic acid fermentation[J] . Journal of Biochemical and Microbiological
Technology and Engineering, 1959, 1( 4) : 393-412.
[ 19] Chen B Y, Zhang M M, Ding Y, et al. Feasibility study of
simultaneous bioelectricity generation and dye decolorization using naturally occurring decolorizers[J]. Journal of
the Taiwan Institute of Chemical Engineers, 2010, 41( 6) :
682-688.
[ 20] Chen B Y, Zhang M M, Chang C T, et al. Assessment upon
azo dye decolorization and bioelectricity generation by Proteus hauseri[J]. Bioresource Technology, 2010, 101( 12) :
4737-4741.
[ 21] Chen B Y, Hong J M, Ng I S, et al. Deciphering simultaneous
bioelectricity generation and reductive decolorization using
mixed-culture microbial fuel cells in salty media[J] . Journal
of Bioscience and Bioengineering, 2013, 44: 446-453.
[ 22] Feng Y, Lee H, Wang W, et al. Continuous electricity generation by a graphite granule baffled air-cathode microbial
fuel cell[J]. Bioresource Technology, 2010, 101 ( 20) :
632-638.
[ 23] He Z, Mansfeld F. Exploring the use of electrochemical impedance spectroscopy ( EIS) in microbial fuel cell studies
[J]. Energy and Environmental Science, 2009, 2 ( 2 ) :
215-219.
[ 24] Fan Y E, Sharbrough E, Liu H. Quantification of the internal resistance distribution of microbial fuel cells[J]. Environmental Science and Technology,2008,42 ( 21 ) :
8101-8107.
[ 25] Chen B Y, Wang Y M, Ng I S, et al. Deciphering simultaneous bioelectricity generation and dye decolorization using
Proteus hauseri[J]. Journal of Bioscience and Bioengineering, 2012, 113( 4) : 502-507.
[ 26] Chen B Y, Hsueh C C, Liu S Q, et al. Deciphering mediating characteristics of decolorized intermediates for reductive decolorization and bioelectricity generation[J]. Bioresource Technology, 2013, 145: 321-325
3. 毕业设计(论文)进程安排
起讫日期 |
设计(论文)各阶段工作内容 |
备 注 |
2016.12-2017.2 |
文献查阅,完成开题报告,熟悉实验仪器。 |
|
2017.3-2017.4 |
对菌株的摇瓶发酵进行培养基成分的优化 |
|
2017.4-2017.5 |
对菌株的摇瓶发酵进行发酵条件的优化 |
|
2017.5-2017.6 |
综合摇瓶发酵后优化条件进行MFC优化 |