二氧化锰/埃洛石纳米管改性阳极对微生物燃料电池性能的影响任务书
2020-05-25 23:42:53
1. 毕业设计(论文)的内容和要求
论文内容 MFC利用有机废水废弃物作为原料进行产电,既有利于环境整治,又可回收能源,降低成本,是一项集环境效益、社会效益和经济效益于一体的新型环保产业。本文以典型的单极室MFC为研究对象,研究了二氧化锰/埃洛石纳米管改性阳极对MFC的影响,以期为MFC阳极改性提供实践、理论基础。 主要内容包括: 一.课题背景 二.微生物燃料电池的原理和组成 三.二氧化锰/埃洛石纳米管改性阳极对MFC性能影响研究 四.结果与讨论 论文要求 1.掌握和运用微生物燃料电池的基本原理,能全面的探讨阳极对MFC产电的影响,及探讨阳极改性对微生物吸附量的影响。 2.制定比较详细的研究大纲,理清撰写的基本思路;运用比较的方法完成 课题研究和论文写作。 3.完成的论文,应该观点正确,论点鲜明,论据充分,论证有力,条理清晰,语句流畅,具有较好的可读性。 |
2. 参考文献
[1] H. Liu, B.E. Logan, Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental science amp; technology. 38 (2004) 4040-4046. [2] Y. Zou, C. Xiang, L. Yang, L.X. Sun, F. Xu, Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, International Journal of Hydrogen Energy. 33 (2008) 4856-4862. [3] M. Ghasemi, W.R.W. Daud, N.Mokhtarian, A. Mayahi, M. Ismail, F. Anisi, M. Sedighi, J. Alam, The effect of nitric acid, ethylenediamine, and diethanolamine modified polyaniline nanoparticles anode electrode in a microbial fuel cell, International Journal of Hydrogen Energy. 38 (2013) 9525-9532. [4] N.W. Zhu, X. Chen, T. Zhang, P.X. Wu, P. Li, J.H. Wu, Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes, Bioresour. Technol. 102 (2011) 422#8722;426. [5] X. Wang, S.A. Cheng, Y.J. Feng, M.D. Merrill, T. Saito, B.E. Logan, Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells, Environ. Sci. Technol. 43 (2009) 6870#8722;6874. [6] S.A. Cheng, B.E. Logan, High hydrogen yield from renewable resources using an improved beamr system, Electrochem. Commun. 9 (2007) 492#8722;496. [7] X.H. Tang, K. Guo, H.R. Li, Z.W. Du, J.L. Tian, Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes, Bioresour. Technol. 102 (2011) 3558#8722;3560. [8] Y. Qiao, C.M. Li, S.J. Bao, Q.L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells, Journal of Power Sources. 170 (2007) 79-84. [9] X. Peng, H. Yu, X. Wang, Q. Zhou, S. Zhang, L. Geng, J. Sun, Z. Cai, Enhanced performance and capacitance behavior of anode by rolling Fe3O4 into activated carbon in microbial fuel cells, Bioresource technology. 121 (2012) 450-453. [10] Y. Fu, J. Yu, Y. Zhang, Y. Meng, Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells, Applied Surface Science. 317 (2014) 84-89. [11] L. Zhang, C. Liu, L. Zhuang, W. Li, S. Zhou, J. Zhang, Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells, Biosensors and Bioelectronics. 24 (2009) 2825-2829. [12] D. Rawtani, Y. K. Agrawal, Multifarious applications of halloysite nanotubes: a review, Rev. Adv. Mater. Sci. 30 (2012) 282#8211;295. [13] P. Zheng, Y. Du, X. Ma, Selective fabrication of iron oxide particles in halloysite lumen, Materials Chemistry and Physics. 151 (2015) 14-17. [14] C. Li, J. Wang, S. Feng, Z. Yang, S. Ding, Low-temperature synthesis of heterogeneous crystalline TiO2#8211;halloysite nanotubes and their visible light photocatalytic activity, Journal of Materials Chemistry A. 1 (2013) 8045-8054. [15] W. Xing, L. Ni, P. Huo, Z. Lu, X. Liu, Y. Luo, Y. Yan, Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method, Applied Surface Science. 259 (2012) 698-704. [16] Q. Wang, J. Zhang, A. Wang, Alkali activation of halloysite for adsorption and release of ofloxacin, Applied Surface Science. 287 (2013) 54-61. [17] F.J. Garc#237;a, S. Garc#237;a Rodr#237;guez, A. Kalytta, A. Reller, Study of natural halloysite from the Dragon Mine, Utah (USA), Zeitschrift f#252;r anorganische und allgemeine Chemie. 635 (2009) 790-795. [18] S. Khilari, S. Pandit, D. Das, D. Pradhan, Manganese cobaltite/polypyrrole nanocomposite-based air-cathode for sustainable power generation in the single-chambered microbial fuel cells, Biosensors and Bioelectronics. 54 (2014) 534-540. [19] P. Liang, X. Huang, M.Z. Fan, X.X. Cao, C. Wang, Composition and distribution of internal resistance in three types of microbial fuel cells, Applied Microbiology and Biotechnology . 77 (2007) 551-558. [20] T. Song, X. Wu, C.C. Zhou, Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate, Bioprocess and biosystems engineering. 37 (2014) 133-138. |
3. 毕业设计(论文)进程安排
起讫日期 |
设计(论文)各阶段工作内容 |
备 注 |
2015.12.31前 |
下达课题任务,查阅文献,做好开题前期准备工作; |
|
2015.12.31-2016.1.15 |
完善课题研究方案,完成外文翻译、文献综述和开题报告工作,组织开题论证和初期检查工作; |
|
2016.1.15-2016.6.7 |
课题的实验、设计、调研及结果的处理与分析,完成毕业论文和答辩PPT的写作; |
|
2016.6.7-2016.6.14 |
课题论文答辩; |
|
2016.6.14-2016.7.8 |
完成毕业设计(论文)教学质量的分析、总结和评优工作,做好材料的收集、整理和归档工作。 |
|
|
|
|