机器学习在视频数据能进度估计中的应用任务书
2020-05-01 08:40:15
1. 毕业设计(论文)的内容和要求
秋冬季节的雾霾对交通出行影响很大,准确估计能见度对交通通行具有重要的现实意义。
众所周知,道路上视频监控很容易获取。
同时,我们不难发现,在晴空和有雾状态下的图像具有明显的差异。
2. 参考文献
[1]S. K. Nayar, S. G. Narasimhan, Vision in Bad Weather, 1999 [2]Y. Y. Schechner, S. G. Narasimhan, S. K. Nayar, Instant dehazing of images using polarization, 2001 [3] S. G. Narasimhan, S. K. Nayar, Contrast restoration of weather degraded images, IEEE Trans. Pattern Analysis Machine Intelligence, Vol. 25, No. 6,2003 [4]N. Hautiere, J. Tarel, J. Lavenant, D. Aubert, Automatic fog detection and estimation of visibility distance through use of an onboard camera, Machine Vision and Applications, 2006, 17(1): 8-20 [5]R. T. Tan, Visibility in bad weather from a single image, CVPR, 2008 [6]K. He, J, Sun, X. Tang, Single image haze removal using dark channel prior, IEEE Trans. Pattern Analysis Machine Intelligence, Vol. 33, No. 12, 2011 [7]C. Sakaridis, D. Dai, L. V. Gool, Semantic foggy scene understanding with synthetic data, International Journal of Computer Vision, 2018 [8]A. B. Patel, T. Nguyen, R. G. Baraniuk, A probabilistic framework for deep learning, [9]A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet Classification with deep convolutional neural networks, 2011 [10] H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos, A survey of multilinear subspace learning for tensor data, 2011
3. 毕业设计(论文)进程安排
2018年12月19日-2018年12月22日 任务书下达 2018年12月22日-2019年1月12日 收集资料,熟悉课题,完成开题报告 2019年2月1日-2019年2月15日 针对系统,建立数学模型。
2019年2月15日-2019年3月1日 推导。
2019年3月1日-2019年6月1日 读文献,课题学习、研究,编写程序。
您可能感兴趣的文章
- 腐败与美国各州收入不平等之间的关系:来自专家小组的协整和误差修正模型的证据外文翻译资料
- 内蒙古1962 – 2016年时间序列气候变量的变化特征外文翻译资料
- 残差修正法在季节性ARIMA电力需求预测中的应用:以中国为例外文翻译资料
- 净工资与居民消费价格指数的关系分析外文翻译资料
- 我国鸡蛋价格波动的深入研究与预测外文翻译资料
- 信赖域与线搜索技术的结合外文翻译资料
- 求解奇异非线性方程组的多点LM方法外文翻译资料
- 具有双线性和非单调发病率的关于两个菌株的流行病模型的全局稳定性分析外文翻译资料
- 寻找可伸缩的区块链结构: 工作证明与BFT复制外文翻译资料
- 网络营销中潜在成功人士的结构方程建模外文翻译资料