登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 文献综述 > 理工学类 > 数学与应用数学 > 正文

回归模型中变量选择方法比较研究文献综述

 2020-06-27 19:35:09  

文 献 综 述 回归模型是现代统计学中应用最为广泛的一类模型,变量选择作为模型选择的一种手段,是统计分析与推断中的重要内容, 是近年来统计分析的最主要内容之一,是大数据时代高维数据统计模型的研究基础,也是当今研究的热点课题。

在计算机技术日益强大的今天,人们越来越关注如何从海量数据中挖掘出有用信息。

统计建模是完成这类任务的有效手段之一。

在统计建模最开始,为了尽量避免因为漏掉重要的自变量而导致的模型误差,我们一般会选入比较多的自变量。

这样会使得模型的预测能力较弱,并且难以解释。

因此需要找到对变量解释性最强的自变量集合,来提高模型的解释性和预测精度。

在回归模型建模过程中,如果把一些对响应变量影响不大,甚至没有影响的协变量选入回归模型,估计和预测的精度也会下降[1]。

变量选择方法的功能就是选择恰当有用的变量以实现维数的降低,简化模型。

1、国外研究回顾 变量选择间题的研究由来已久,20世纪60年代就已经有不少文献。

以1974年赤池弘次,提出AIC为标志,三十多年来,变量选择模型选择的研究一直是统计学的重要问题,方法和理论都有了巨大的发展, 并见证了科学的进步。

剩余内容已隐藏,您需要先支付 5元 才能查看该篇文章全部内容!立即支付

微信号:bysjorg

Copyright © 2010-2022 毕业论文网 站点地图