图像恢复过程之振铃现象抑制方法文献综述
2020-04-10 16:07:45
文 献 综 述
在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差等,都难免会造成图像的失真。图像退化的典型是图像出现模糊、失真,出现附加噪声等。从而接收端显示的图像已经不再是原始图像,图像效果明显变差,因此对退化的图像要进行恢复处理使之恢复成原始图像,称之为图像恢复。
恢复图像的过程中普遍存在着振铃现象。恢复图像过程中的振铃效应会直接影响到图像的效果质量。对复原图像中振铃效应的评价是复原图像评价的一个重要部分,也是检验复原算法性能的一个重要方法。因此,利用算法抑制其过程中产生的振铃现象是非常重要的过程。
图象复原关键是要知道图象退化的过程,即要知道图象退化模型,并据此采取相反的过程以求得原始(清晰)象。由于图象中往往伴随着噪声,噪声的存在不仅使图象质量下降,而且也会影响了图象的复原效果。从上面论述可以知道,运动造成图象的退化是非常普遍的现象,所以对于退化后的图象进行复原处理非常具有现实意义。图象复原的目的就是根据图象退化的先验知识,找到一种相应的反过程方法来处理图象,从而尽量得到原来图象的质量,以满足人类视觉系统的要求,以便观赏、识别或者其他应用的需要。
图像复原处理的关键问题在于建立退化模型。输入图像f(x, y)经过某个退化系统后输出的是一幅退化的图像。为了讨论方便,把噪声引起的退化即噪声对图像的影响一般作为加性噪声考虑, 这也与许多实际应用情况一致,如图像数字化时的量化 噪声、 随机噪声等就可以作为加性噪声,即使不是加性噪声而是乘性噪声,也可以用对数方式将其转化为相加形式。
原始图像f(x, y) 经过一个退化算子或退化系统H(x, y) 的作
用, 再和噪声n(x,y)进行叠加,形成退化后的图像g(x, y)。图2-1表示退化过程的输入和输出的关系,其中H(x, y)概括了退化系统的物理过程,就是所要寻找的退化数学模型。
数字图像的图像恢复问题可看作是: 根据退化图像g(x , y)和退化算子H(x , y)的形式,沿着反向过程去求解原始图像f(x , y), 或者说是逆向地寻找原始图像的最佳近似估计。图像退化的过程可以用数学表达式写成如下的形式:
g(x, y)=H[f(x, y)] n(x, y) (2-1)
在这里,n(x, y)是一种统计性质的信息。在实际应用中, 往往假设噪声是白噪声,即它的频谱密度为常数,并且与图像不相关。
您可能感兴趣的文章
- UI 和 UE 设计技术及其在 HTML5 网站开发中的地位的研究外文翻译资料
- .NET MVC框架在开发农业资源清单系统中的适应性外文翻译资料
- 使用Java平台针对数据库桥接层的Spring框架可靠性调查外文翻译资料
- 基于MVC架构的数据库和Web应用程序外文翻译资料
- 利用微服务SpringBoot 设计和开发公众投诉系统的后端应用。外文翻译资料
- 基于SSM框架的校园自行车租赁管理系统统计外文翻译资料
- 基于Android的校园交友社交应用的设计与开发外文翻译资料
- 基于Android的在线社交系统服务端的设计与实现外文翻译资料
- 基于Spring-boot微服务框架的学生成绩分析系统的设计与实现外文翻译资料
- 用于生成计算材料科学文献中使用的方法和参数的数据库的自动化工具外文翻译资料