登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 任务书 > 理工学类 > 信息与计算科学 > 正文

基于深度哈希算法的海量图像检索技术研究任务书

 2020-04-08 13:19:46  

1. 毕业设计(论文)主要内容:

随着互联网以及大数据时代的到来,网络上的图像数量变得越来越大。传统的检索技术已经无法满足当前对大量图像检索的需要。而哈希学习具有优秀的时间与空间复杂度,能够有效解决海量图像的检索问题。哈希学习是基于机器学习的方法得到图像的哈希索引,用于支持大规模图像的快速检索。

深度哈希是指基于深度学习的哈希学习算法。深度学习是当前机器学习中的热点方法,将深度学习应用于哈希,在保证图像检索时空效率的同时,还能够提高检索结果的精确度。

论文的主要内容包括:

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

2. 毕业设计(论文)主要任务及要求

1、查阅不少于15篇的相关资料,其中英文文献不少于3篇,完成开题报告。


2、完成不少于5000字的英文文献翻译工作。


3、收集相关的原始数据,并进行数据的预处理工作。

剩余内容已隐藏,您需要先支付后才能查看该篇文章全部内容!

3. 毕业设计(论文)完成任务的计划与安排

1-3周:查阅文献,完成开题报告
4-6周:总体设计,完成论文综述
7-10周:设计算法,功能模块设计
11-13周:编码和测试
14-15周:写论文,提交初稿,给老师检查,修改定稿,答辩。

4. 主要参考文献

[1] wu-jun li, sheng wang, wang-cheng kang. feature learning based deepsupervised hashing with pairwise labels. ijcai 2016: 1711-1717

[2] zhu h, long m, wang j, etal. deep hashing network for efficient similarity retrieval[c]//aaai. 2016:2415-2421.

[3] erin liong v, lu j, wangg, et al. deep hashing for compact binary codes learning[c]//proceedings of theieee conference on computer vision and pattern recognition. 2015: 2475-2483.

剩余内容已隐藏,您需要先支付 5元 才能查看该篇文章全部内容!立即支付

微信号:bysjorg

Copyright © 2010-2022 毕业论文网 站点地图