基于冷热两端不同散热器的热电制冷冰箱的模拟研究毕业论文
2022-04-01 21:34:42
论文总字数:22353字
摘 要
热电制冷技术是在半导体制冷材料基础上发展起来的一门新技术,具有良好的应用前景,在众多领域中得到广泛的应用。与传统制冷技术相比,热电制冷技术主要具有体积小、重量轻、结构简单、无污染、可靠性高、启动快、操作具有可逆性等优点。但是由于热电制冷的制冷效率受器件冷端和热端温度的影响非常大,其制冷温度不够,制冷量不足,制冷效率较低,这也是制约热电制冷发展的主要因素之一。尽可能扩大冷、热端之间的温差,是改善热电制冷器件散热性能的有效途径。因此,在制冷器件的制造工艺没有很大突破的情况下,通过采用合理的散热方式,改善传热条件, 在一定条件下, 可以提高制冷器的制冷效率, 增加制冷量。热管散热器和铝翅片散热器作为两种高效的传热元件,均具有良好的传热性能,在解决器件散热问题上各有优势:平板热管散热器由于其良好的导热性、等温性,散热性能更加优秀,因此适合用于热端散热;而铝翅片散热器价格低廉,便于加工,可以用于冷端进行换热。所以,利用热管散热器和铝翅片散热器可以很好地改善热电制冷器件的散热性能。
本课题将铝翅片散热器和热管散热器两种不同散热器应用于热电制冷冰箱中,热管散热器置于冰箱热端,铝翅片散热器置于冰箱冷端。采用Icepak电子热设计分析软件,建立两端不同散热器的热电制冷冰箱的数值模型,并对其进行数值模拟研究。计算并分析结果,从而得到热电制冷冰箱的制冷温度、制冷量、制冷效率等随热电制冷片的通电电流、风机流量等因素的变化规律。研究结果表明:
- 在一定风机流量条件下,随着通电电流增大,热电制冷冰箱冷、热两端温度以及箱体内部温度先下降,后上升;而制冷量先增加,后减小;输入功率逐渐增大,制冷效率逐渐降低。
- 在一定风机流量条件下,热电制冷冰箱的制冷温度与制冷量存在制冷最佳电流,在最佳电流下,冷热端及箱体温度达到最低值,制冷量将达到最大值。在风机流量为0.008m3/s条件下,其对应的最佳电流约为4.0A;而在风机流量为0.016m3/s条件下,其对应的最佳电流约为4.6A。随着风量的增加,制冷最佳电流也随之增大。
- 在一定的电流条件下,热电制冷冰箱的箱体平均温度随风机流量的增加而降低;而制冷量以及制冷效率随风机流量的增加而增加。总体来说,风机功率对热电制冷冰箱的制冷性能影响不大。
本文通过对冷热两端不同散热器热电制冷冰箱的数值模拟研究,证明了使用热管散热器和铝翅片散热器能提高热电制冷冰箱的制冷性能,并重点解决了冷热两端的换热问题,以达到提高热电制冷片制冷系数的目的,从而实现了整机的高效节能,并为热管及铝翅片两种传热元件应用于热电制冷器件散热领域奠定了基础。
以上研究结果可以用来预测冷热两端分别采用热管散热器和铝翅片散热器的热电制冷冰箱的制冷性能,为热电制冷冰箱的深入研究提供理论基础。
关键词:热电制冷 铝翅片散热器 热管散热器 数值模拟 散热性能
Simulation Study on Thermoelectric Cooling Refrigerator
Based on Different Rediators Arranged on the Hot and Cold Sides
ABSTRACT
Thermoelectric cooling technology is a developing new technology with good application prospects based on the semiconductor refrigerating materials. It has been widely used in many fields. Compared with the traditional cooling technology, thermoelectric cooling technology has many advantages, for example, it has small size, light weight, simple structure, high reliability, fast starting, reversible operation with no pollution and so on. However, temperatures of the hot and cold sides of the electronic devices have great impact on the cooling efficiency of thermoelectric cooling, it leads to the phenomenon that its cooling temperature is not enough, the cooling capacity is also insufficient, and the cooling efficiency is low. This is also one of the main factors that restrict the development of thermoelectric cooling. It is an effective way to improve the heat transfer performance of thermoelectric cooling devices extending the temperature difference between the hot and cold sides as much as possible. So the cooling efficiency and the cooling capacity can be increased by improving heat transfer conditions with appropriate cooling way, in condition that the manufacturing process of the refrigeration device makes no huge breakthroughs. As efficient heat transfer components, heat pipe radiator and aluminum fin radiator both have excellent properties for heat transfer and they also have their own advantages in solving the problem of heat dissipation: The heat pipe radiator has better heat transfer performance because of its excellent thermal conductance and isothermal property so it is suitable for the cooling of the hot side; the aluminum fin radiator is cheaper and works easier than the heat pipe and it can be used on the cold side. So the cooling performance of thermoelectric cooling device can be well improved using these two radiators.
In this study, two different radiators, aluminum fin radiator and heat pipe radiator are applied into the thermoelectric cooling, heat pipe radiator is placed on the hot side, aluminum fin radiator on the cold side. Establish a numerical model of thermoelectric refrigerator with different radiators, using the thermal-electronic design and analysis software, Icepak, and put up simulation study on the numerical model. Calculate and analysis the results, and draw the conclusion of the impact of the current, fan power of the refrigeration film on the heat transfer performance (cooling temperature, cooling capacity, cooling efficiency etc.) of the refrigerator. The results show that:
- Under certain fan flow conditions, with the increase of the current, the temperatures of the hot and cold sides and the casing will first go down, then go up; the cooling capacity just tends to be the reverse. The input power increases and the cooling efficiency decreases gradually.
- Under certain fan flow conditions, for the thermoelectric refrigerator there is a best current for cooling, under this current condition, the temperatures of the hot and cold sides, and the casing will reach the minimum, and the cooling capacity will reach the maximum. The best current for cooling is about 4.0A, with the fan flow of 0.008m3/s, and 4.6A with the fan flow of 0.016m3/s. Therefore, the best current rises with the increase of air flow.
- Under certain current condition, the average temperature of the refrigerator decreases with the increase of the fan flow, while the cooling capacity and the cooling efficiency increases. In a word, the fan flow has little effect on the cooling performance of the thermoelectric refrigerator.
By the numerical simulation research on thermoelectric cooling refrigerator based on different rediators arranged on the hot and cold sides, it proves that the cooling performance of thermoelectric refrigerator can be improved using heat pipe radiator and aluminum radiator fin radiator , and mainly solve the problem of the heat transfer of the hot and cold sides in order to improve the cooling efficiency , so as to achieve high efficiency and save energy. And it also lay the foundation for applying heat pipe and aluminum fin radiators into the field of heat transfer of the thermoelectric devices.
The results above can be used to predict the cooling performance of thermoelectric cooling refrigerator with heat pipe radiator and aluminum fin radiator arranged on the hot and cold sides ,and provide theoretical basis for further research of thermoelectric refrigerator.
Key words:thermoelectric refrigeration;aluminum fin radiator;heat pipe radiator;numerical simulation;heat transfer performance
目 录
摘要 I
ABSTRACT III
符号表 VIII
第一章 绪论 1
1.1 课题背景及意义 1
1.2 热电制冷的散热现状 2
1.2.1 半导体制冷散热方式概述 2
1.2.2 铝翅片散热器 2
1.2.3 热管散热器 3
1.3 半导体制冷散热相关实验研究 4
1.4 热管技术在半导体制冷中的应用 4
1.5 课题要解决的问题及研究手段 5
1.5.1 研究内容 5
1.5.2 研究手段 6
第二章 冷热两端不同散热器的热电制冷冰箱模型建立 8
2.1 Icepak软件介绍 8
2.2 模型建立 8
2.2.1 物理模型 8
2.2.2 物性参数 11
2.3 控制方程 11
2.4 流体控制方程 12
2.5 初始条件 13
2.6 边界条件 14
2.7 数值计算方法及计算模型 14
2.8 网格划分 14
2.8.1 网格设置 14
2.8.2 网格质量检查 15
2.8.3 网格划分展示 15
第三章 模拟结果及数值分析 17
3.1 参数定义 17
3.2 模拟结果分析 18
3.2.1 温度场分析 18
3.2.2制冷性能分析 24
第四章 结论与展望 29
4.1 结论 29
4.2 展望 29
请支付后下载全文,论文总字数:22353字