可移动搬运机器人机械臂控制系统设计毕业论文
2021-11-02 21:11:57
摘 要
随着科技发展,工业机器人的应用已经相当成熟,其在制造业、医学、军事等行业的应用已经比较广泛。机器人的使用,代替了很多重复性高、工作环境艰苦危险性大或操作精度高的工作。可此类机器人应用场景单一,且价格昂贵,并不适用与日常生活服务,便捷人们生活。基于此,本文旨在设计一款应用场景广泛、灵活性高的搬运机器人,完成短距离的物品传输、递送等工作,以便捷人们生活。
本文首先借助Solidworks设计机械臂为三自由度四关节机械结构,根据结构选择闭环步进电机作为关节驱动元件,并利用STM32单片机作为微控制器,接收位置参数信息并输出变频PWM以控制步进电机转动。然后使用D-H法对机械臂关节和连杆进行建模,并对其正、逆运动学进行数学建模。接着使用Matlab机器人工具箱(Robotics Toolbox)对所建立的正、逆运动学数学模型进行仿真,验证了数学模型的准确性,同时使用Bresenham 插补算法对机械臂末端关节进行轨迹规划,获取各关节转动运动参数,并结合正运动学所建模型使用Monte Carlo Methods对机械臂末端执行器的工作域进行仿真。最后设计控制系统,轨迹规划获取的关节运动参数,对STM32单片机输出的步进电机控制脉冲的频率和步数进行调整,传输给步进电机驱动器以精准平顺地控制各关节转角。
设计主要研究内容为三自由度机械臂的运动学建模和仿真,其核心为机械臂的正、逆运动学建模,并将各关节转角——末端位姿矩阵两者的关系应用于轨迹规划、工作域分析、变频PWM输出三方面,为本文的核心内容。
研究结果表明,所建运动学模型正确。所规划轨迹加减速运行平稳,高阶光滑;由工作域仿真图可知,所设计的三自由度机械臂的工作域较广泛,且在工作域内不存在盲点。
关键词:机械臂;三自由度;运动学;轨迹规划;步进电机;PWM
Abstract
Nowadays, the application of robots in industry is relatively mature, and its applications in manufacturing, medical, military and other industries have been more extensive. The use of robots has replaced many tasks with high reproducibility, difficult working environment and high risk, or high precision operation. However, this type of robot has a single application scenario and is expensive, and is not suitable for daily life services, which is convenient for people's lives. Based on this, this article aims to design a handling robot with extensive range of application scenarios and flexibility of movement to complete short-distance item transmission and delivery to facilitate people's lives.
This article first designed the mechanical arm as a three-degree-of-freedom four-joint mechanical structure with the help of Solidworks, selected a closed-loop stepper motor as the joint drive element according to the structure, and used the STM32 microcontroller as a microcontroller to receive position parameter information and output frequency conversion PWM to control the stepper motor Turn. Then the D-H method is used to model the joints and links of the manipulator, and the forward and reverse kinematics are mathematically modeled. Then use Matlab-Robotics Toolbox to simulate the established mathematical models of forward and inverse kinematics to verify the accuracy of the mathematical model. At the same time, the Bresenham interpolation algorithm is used to plan the trajectory of the joint of the end of the robot arm to obtain the rotation motion parameters of each joint Combined with the model built by positive kinematics, Monte Carlo Methods is used to simulate the working domain of the end effector of the manipulator. Finally, the control system is designed, the joint motion parameters obtained by trajectory planning, the frequency and number of steps of the stepping motor control pulse output by the STM32 microcontroller are adjusted, and transmitted to the stepping motor driver to accurately and smoothly control the rotation angle of each joint.
The design mainly researches the kinematics modeling and simulation of the three-degree-of-freedom manipulator. Its core is the mathematic model of the forward kinematics and the inverse kinematics of the manipulator. The mathematical relationship between the joint angle and the end pose matrix is used in trajectory planning, The three aspects of work domain analysis and variable frequency PWM output are the core content of this article.
The results of the researches show that the mathematical model of kinematics built is correct. The acceleration and deceleration of the planned trajectory run smoothly, and the high-order smooth; from the simulation diagram of the working domain, we can see that the designed three-degree-of-freedom manipulator has a complete working domain, and there is no blind spot in the working domain.
Key Words:mechanical arm; three degrees of freedom; kinematics; trajectory planning; stepper motor; PWM
目 录
第1章 绪论 1
1.1课题研究背景及意义 1
1.2 机器人国内外研究现状 2
1.3 主要研究内容及技术安排 2
1.3.1 设计目标 3
1.3.2 拟采用技术方案及措施 3
第2章 三自由度机械臂硬件设计 5
2.1机械结构 5
2.1.1 机械臂各关节转动原理 6
2.1.2 三维结构建模 9
2.2 微控制器 10
2.3 关节驱动电机 11
2.3.1 闭环步进电机 13
2.3.2 驱动器 14
2.4 本章小结 15
第3章 机械臂运动学分析 16
3.1串联机械臂运动学数理建模 16
3.1.1 机械臂空间描述 16
3.1.2 机械臂D-H建模及参数标定 20
3.2 机械臂正向运动学 23
3.3 机械臂逆向运动学 26
3.3.1 几何法求解机械臂逆运动学模型 26
3.3.2 机械臂逆运动学算法及实现 27
3.4 本章小结 28
第4章 机械臂轨迹规划与运动学仿真 30
4.1基于Robotics Toolbox的机械臂建模与运动学仿真 30
4.1.1 基于Matlab-Robotics Toolbox的机械臂建模 30
4.1.2 正运动学模型验证 30
4.1.3 逆运动学模型验证 31
4.2 基于Bresenham 插补算法的机械臂轨迹规划 32
4.3 基于Monte Carlo Methods的机械臂工作域分析 34
4.4 本章小结 35
第5章 三自由度机械臂控制系统设计 36
5.1控制系统 36
5.1.1 STM32控制单元设计 36
5.1.2 STM32产生变频PWM 37
5.2 步进电机及其驱动原理 38
5.2.1 正反转动控制与脱机信号 38
5.2.2 S曲线加减速控制 39
5.3 控制策略 40
5.2.1 正反转动控制与脱机信号 40
5.2.2 S曲线加减速控制 40
5.4 本章小结 41
第6章 三自由度机械臂控制系统设计 42
6.1 总结 42
6.2 展望 43
参考文献 44
致谢 46
附录 47
第1章 绪论
课题研究背景及意义
从20世纪50年代起,工业机械臂的产业规模逐步扩大,应用场景与日俱增。从汽车、电子电器组装,到药材食品的生产、机械零件加工或小型电子元器件焊接,机械逐步应用于生产并替代人们从事单调、重复性高、危险或操作精度高、狭小空间的工作。
现代机器人主要可以归为工业机器人、特种机器人和服务机器人[1]。虽然工业机器人已经有较长时间的应用和较成熟的技术,但是其在确定场景机械地执行单一性的任务,存在着操作灵活性不足、在线感知能力弱等问题;特种机器人是代替人类在恶劣环境、危险环境和狭窄环境等不适宜人类工作的场所进行工作,其存在依赖离线编程、在动态位置环境中依赖人类远程操作等问题;服务机器人是应对全球人口老龄化趋势加剧的基本手段之一,存在着如难与人有效沟通、人机协调合作能力不足、无法接受抽象指令等诸多问题。