登录

  • 登录
  • 忘记密码?点击找回

注册

  • 获取手机验证码 60
  • 注册

找回密码

  • 获取手机验证码60
  • 找回
毕业论文网 > 毕业论文 > 理工学类 > 电气工程及其自动化 > 正文

高压直流换流阀在线监测及带电检测技术研究毕业论文

 2021-03-16 23:00:07  

摘 要

Abstract IV

第1章 绪论 1

1.1 本文研究的目的 1

1.2 高压直流输电的发展现状 1

1.3在线监测及带电检测研究现状 3

1.3.1换流阀常见故障分析介绍 3

1.3.2换流阀可靠性评估 3

1.4国内外对于高压直流输电研究成果的介绍 6

第2章 晶闸管控制算法 7

2.1 晶闸管控制算法原理介绍 7

2.2 晶闸管控制算法MATLAB仿真 10

2.2.1 双反星形可控硅整流电路的MATLAB仿真 10

2.2.2 电流形三相逆变电路的MATLAB仿真 11

第3章 可控硅电子设备 13

3.1 概述 13

3.2 元件功能介绍 13

3.2.1 施密特触发器 13

3.2.2 单门限电压比较器 14

3.3 板电路构成 15

3.3.1 耦合取能电路 15

3.3.2 BOD紧急触发电路 17

3.3.3 门极触发信号放大电路 18

3.3.4 检测回路 18

3.3.5 电压测量回路 20

3.3.6 电源电压过低保护以及启动置零 21

3.3.7 信号的接收与发射 23

3.4 板的逻辑回路介绍 24

第4章 阀基电子设备 26

4.1 阀基电子设备概述 26

4.2 阀基电子设备结构 26

4.3 阀基电子设备几种板卡的硬件结构 27

4.3.1 主控板卡的硬件结构 27

4.3.2阀避雷器在线监测概述 33

4.3.3阀塔漏水检测系统概述 34

4.3.4 基于FPGA的阀基电子设备板卡仿真 37

第5章 可控硅在线监测 39

第6章 通信设备 41

6.1光电转换 41

6.2 HDLC协议 42

第7章 结论与展望 44

致谢 45

参考文献 46

附录 47

附录A 时序逻辑电路仿真程序 47

附录B 读数逻辑控制回路BOD试验仿真程序 47

附录C 读数逻辑控制回路TM板控制试验仿真程序 48

摘要

高压直流输电作为一种新型的输电方式,近些年在电气工程研究领域逐渐占据了主导地位,随着众多高压直流线路的建设与运营,其与交流电网的连接及其稳定性决定了直流线路能否正常运行,因此对于高压直流换流阀的在线监测及带电检测技术十分重要。本文就高压直流换流阀的在线监测及带电检测技术展开论述,主要从检测和监测系统的硬件结构入手对整个系统进行结构上的深入剖析。

本文首先介绍了有关高压直流输电系统的基本工作原理、换流装置的主要硬件结构及其基本控制方法,接着介绍了国内外对于此的研究现状以及换流阀常见故障,最后详述了高压直流换流阀的在线监测及带电检测系统的基本构成以及各部分的功能,并对于部分功能进行了仿真实验验证。

换流阀的在线监测及带电检测系统主要由可控硅电子设备(Thyristor Electronics ,简称TE)、阀基电子设备(Valve Basic Electronics ,简称VBE)、可控硅在线监测设备(Thyristor Monitoring,简称TM)和通信传输设备构成。1、TE主要用于高压直流输电系统中晶闸管的触发与保护,在触发晶闸管的同时具有BOD紧急触发、du/dt检测、电压测量、电源电压过低保护、启动置零以及信号的接收与发射等功能。2、VBE作为高压直流输电系统中主要的信息处理通道,包含单阀逻辑(脉冲控制和状态监测)、光接口、漏水监测、避雷器监视、光传输设备等部分。在基本电路结构阐述完毕后,我们使用可编程逻辑器件FPGA进行硬件电路的实现,并利用ModelSim软件对基于可编程逻辑器件FPGA的数字电路进行了仿真,得到了各个电路的时序逻辑波形。3、TM是整个在线监测系统的人工指令中心,它主要承担了人机交互的功能,本文通过流程图方式介绍TM的硬件结构和工作执行流程。4、通信传输设备是各个设备相互通信的通道,主要负责光信号的传输,在此模块中本文详述了光纤通信协议HDLC协议以及光电转换、电光转换的全过程。

本文在原理阐述过程中将设备的硬件与功能相结合,使得功能的介绍更加具体。此外,在VBE的介绍过程中,利用了FPGA进行硬件设计,简化了硬件结构的同时为利用Verilog HDL语言进行实验仿真提供了便利。

关键词:换流阀;在线监测与带电检测;可控硅电子设备;阀基电子设备;FPGA

Abstract

As a new type of power transmission, the HVDC (high-voltage direct current) transmission has gradually occupied a dominant position in the field of electrical engineering. With the construction and operation of multitudinous HVDC lines, the stability of its connection with AC power grid determines the function of DC line, which makes the secondary detection and on-line monitoring technology of HVDC converter valve really important. The article below details the principle of secondary detection and on-line monitoring technology of HVDC converter valve, starting with the hardware structure of the detection and monitoring system.

This article first introduces the basic working principle of the HVDC transmission system, the main hardware structure of converter device and its basic control method. Then, we present the common faults of converter valve as well as the latest research by both domestic and overseas experts. Finally, the basic composition and the function of each part of the secondary detection and on-line monitoring system of HVDC converter valve, some of which are verified through functional simulation experiments afterwards, are narrated in detail.

The secondary detection and on-line monitoring of converter valve is mainly composed of Thyristor Electronics (TE), Valve Basic Electronics(VBE), Thyristor Monitoring (TM) and communication transmission equipment. 1. TE is mainly used for the direct trigger and protection of thyristor in the HVDC transmission system, which consists of functions such as BOD emergency trigger, du/dt detection, voltage measurement, low-voltage protection, zero after start, signal receiving and signal transmitting besides triggering the thyristor. 2. Served as the main channel for information processing in the HVDC transmission system, VBE is made up of separate units such as single valve logic (pulse control and condition monitoring), optical interface, leakage monitoring, lightning arrester monitoring, optical transmission equipment, etc. After the basic circuit structure is expounded, we use the programmable logic device FPGA to build hardware circuit and then obtain the temporal logic waveform of the circuit by using ModelSim for simulating digital circuit based on the programmable logic device FPGA. 3. TM is the artificial command center of the on-line monitoring system, which undertakes the function of human-computer interaction mainly. This article introduces the hardware structure and the working process of the Thyristor Monitoring(TM) with the flow chart. 4. Communication transmission equipment responsible for optical signal transmission is a mutual communication channel for all devices. The article details the optical fiber communication protocol (HDLC protocol) and the overall process of photoelectric conversion and electro-optical conversion in this part.

您需要先支付 50元 才能查看全部内容!立即支付

微信号:bysjorg

Copyright © 2010-2022 毕业论文网 站点地图