液压传动系统设计与计算外文翻译资料
2022-07-19 21:21:57
外文原文
Hydraulic actuation system design and computation
1 Is clear about the design request to carry on the operating mode analysis.
When design hydraulic system below, first should be clear about the question, and takes it as the design basis.
Main engine use, technological process, overall layout as well as to hydraulic gear position and spatial size request; The main engine to the hydraulic system performance requirement, like the automaticity, the velocity modulation scope, the movement stability, the commutation pointing accuracy as well as the request which to the system efficiency, warm promotes; Hydraulic system working conditions, like temperature, humidity, vibration impact as well as whether has situation and so on corrosiveness and heat-sensitive material existence.
In in the above work foundation, should carry on the operating mode analysis to the main engine, the operating mode analysis including the movement analysis and the mechanical analysis, also must establish the load and the operating cycle chart to the complex system, from this understood the hydraulic cylinder or the oil motor load and the speed change as necessary the rule, below makes the concrete introduction to the operating mode analysis content
1.1 movements analyses
The main engine functional element according to the technological requirement movement situation, may use the displacement circulation chart (L—t), the speed circulation chart (v—t), or the speed and the displacement circulation chart indicated, from this carries on the analysis to the movement rule.
1.1.1 displacements circulation attempts L—t
The chart 1.1 is the hydraulic press hydraulic cylinder moves the circulation chart, the y-coordinate L expression piston moves, the x-coordinate t expression starts from the piston to the reposition time, the rate of curve expression movement of plunger speed.
Chart 1.1 displacements circulation chart
1.1.2 speeds circulation chart v—t (or v—L)
In the project the hydraulic cylinder movement characteristic may induce is three kind of types. The chart 1.2 is three kind of types hydraulic cylinders v —t chart, the first kind of like chart 1.2 center solid lines show, the hydraulic cylinder starts to make the uniform accelerated motion, then uniform motion,
Chart 1.2 speeds circulation chart
Finally uniform retarded motion to end point; The second kind, the hydraulic cylinder preceding partly makes the uniform accelerated motion in the overall travelling schedule, in another one partly makes the uniform retarded motion, also the acceleration value is equal; The third kind, the hydraulic cylinder one most above makes the uniform accelerated motion in the overall travelling schedule by a smaller acceleration, then uniform decelerates to the travelling schedule end point. V—t chart three velocity curve, not only clearly has indicated three kind of types hydraulic cylinders movement rule, also indirectly has indicated three kind of operating modes dynamic performance.
1.2 mechanical analyses
1.2.1 hydraulic cylinders loads and duty cycle chart
(1) hydraulic cylinders load strength computations
When the operating mechanism makes the straight reciprocating motion, the hydraulic cylinder must overcome the load is composed by six parts
(1.1)
In the formula: Fc In order to resistance to cutting; Ff In order to friction drag; Fi For inertia resistance; Fg For gravity; Fm In order to seal the resistance; Fb In order to drain the oil the resistance.
(2 ) hydraulic cylinders cycle of motion various stages overall load strength
The hydraulic cylinder cycle of motion various stages overall load strength computation, generally includes the start acceleration, quickly enters, the labor enters, quickly draws back, decelerates applies the brake and so on several stages, each stage overall load strength has the difference.
(a) starts the acceleration period: By now the hydraulic cylinder or the piston were in from static enough to starts and accelerates to the certain speed, its overall load strength including guide rail friction force, packing assembly friction force (according to cylinder mechanical efficiency eta;m=0.9 computation), gravity and so on item, namely:
(1.2)
(b) fast stage:
(1.3)
(c) the labor enters the stage:
(1.4) (d) decelerates:
(1.5)
To the simple hydraulic system, the above computation process may simplify. For example uses the single proportioning pump to supply the oil, only must calculate the labor to enter the stage the overall load strength, if the simple system uses the limiting pressure type variable displacement pump or a pair of association pumps for the oil, then only must calculate the fast stage and the labor enters the stage the overall load strength.
1.2.2 oil motors load
When the operating mechanism makes the rotary motion, the oil motor must overcome the outside load is:
(1.6)
(1) operating duties moment of force Me. The operating duty moment of force is possibly a definite value, also possibly as necessary changes, should carry on the concrete analysis according to the machine working condition.
(2) friction moments. In order to revolve the part journal place friction moment, its formula is:
(1.7)
In the formula: G is revolves the part weight (N); F is the rubbing factor, when the start for the factor, after the start for moves the rubbing factor; R is the
剩余内容已隐藏,支付完成后下载完整资料
附件1:外文资料翻译译文
液压传动系统设计与计算
1 明确设计要求进行工况分析
在设计液压系统时,首先要应明确问题,并以此为设计依据。
主机的使用、工艺流程、总体布局以及对液压齿轮位置和空间尺寸的要求;对液压系统性能要求的主要引擎,如自动化程度、调速范围、运动稳定性、换向指向精度以及对系统的效率、温升等的要求;液压系统的工作环境,如温度、湿度、振动冲击的影响以及是否有腐蚀性和热敏性物质存在等情况。
在上述工作的基础上,应对主机进行运行方式分析,运行方式分析包括运动分析和机械分析,还要对复杂的系统建立负荷和动作周期图,由此了解根据需要对液压缸或液压马达的负载和速度随时间变化的规律,下面对运动模式分析的内容作具体介绍。
1.1 运动分析
主机功能元件按工艺要求运行情况,可以用位移循环图(L—t),速度循环图(v—t),或速度与位移流程图表示,由此进行分析运动规律。
1.1.1 位移循环图L—t
图1.1是液压机的液压缸位移循环图,纵坐标L表示活塞移动,横坐标t表示从活塞开始到重新定位的时间,曲线斜率表示活塞移动速度。
图1.1 位移循环图
1.1.2 速度循环图v—t(或v—L)
在项目中液压缸的运动特点可归纳为三种类型。图1.2是三种类型液压缸的v—t图,第一种如图1.2中实线所示,液压缸开始作匀加速运动,然后匀速运动,
图1.2 速度循环图
最后将减速运动到终点;第二种,液压缸在总行程的前一半作匀加速运动,在另一半作匀减速运动,且加速度的数值相等;第三种,液压缸在总行程的一大半以上以较小的加速度作匀加速运动,然后匀减速至行程终点。v—t图的三条速度曲线,不仅清楚地表明了三种类型液压缸的运动规律,还间接地表示了三种运行方式的动态性能。
1.2 动力分析
动力分析,是研究机器在工作过程中,其执行机构的受力情况,对液压系统而言,就是研究液压缸或液压马达的负载情况。
1.2.1 液压缸的负载及负载循环图
(1) 液压缸的负载力计算
当操作机构作直线往复运动时,液压缸必须克服的负载由六部分组成:
(1.1)
式中:Fc为切削阻力;Ff为摩擦阻力;Fi为惯性阻力;Fg为重力;Fm为密封阻力;Fb为排油阻力。
(2) 液压缸循环运动各阶段的总负载力
液压缸循环运动各阶段的总负载力计算,一般包括启动加速、快进、工进、快退、减速制动等几个阶段,每个阶段的总负载力是有区别的。
(a) 启动加速阶段:到现在液压缸或活塞处于由静止状态,启动并加速到一定速度,其总负载力包括导轨的摩擦力、密封装置的摩擦力(按缸的机械效率=0.9计算)、重力和惯性力等项,即:
(1.2)
(b) 快速阶段:
(1.3)
(c) 工进阶段:
(1.4)
(d) 减速:
(1.5)
对简单液压系统,上述计算过程可以简化。例如采用单定量泵供油,只需计算工进阶段的总负载力,若简单系统采用限压式变量泵或双联泵供油,那么只需计算快速阶段和工进阶段的总负载力。
1.2.2 液压马达的负载
当操作机构作旋转运动时,液压马达必须克服的外负载是:
(1.6)
(1) 工作负载力矩Me
工作负载力矩可能是定值,也可能随时间变化,应根据机器工作条件进行具体分析。
(2) 摩擦力矩Mf
摩擦力矩Mf为旋转部件轴颈处的摩擦力矩,其计算公式为:
(1.7)
式中:G为旋转部件的重量(N);f为摩擦因数,启动时为静摩擦因数,启动后为动摩擦因数;R为轴颈半径(m)。
(3) 惯性力矩Mi
惯性力矩Mi为旋转部件加速或减速时产生的惯性力矩,其计算公式为:
(1.8)
式中:ε为角加速度(r/s2);Delta;omega;为角速度的变化(r/s);Delta;t为加速或减速时间(s);J为旋转部件的转动惯量(),。
式中:为回转部件的飞轮效应()。
各种回转体的可查《机械设计手册》。
根据式(1.6),分别算出液压马达在一个工作循环内各阶段的负载大小,便可绘制液压马达的负载循环图。
2 确定液压系统主要参数
2.1 液压缸的设计计算
2.1.1 初定液压缸工作压力
液压缸工作压力主要根据运动循环各阶段中的最大总负载力来确定,此外,还需要考虑以下因素:
(1) 各类设备的不同特点和使用情况
(2) 考虑经济和重量因素,压力选得低,则元件尺寸大,重量重;压力选得高,则元件尺寸小,重量轻,但对元件的制造精度,密封性能要求高。
所以,液压缸的工作压力的选择有两种方式:一是根据机械类型选;二是根据切削负载选。
如表2.1、表2.2所示。
表2.1 按负载选执行文件的工作压力
负载/N |
<5000 |
500~10000 |
10000~20000 |
20000~30000 |
30000~50000 |
>50000 |
工作压力/MPa |
le;0.8~1 |
1.5~2 |
2.5~3 |
3~4 |
4~5 |
>5 |
表2.2 按机械类型选执行文件的工作压力
机械类型 |
机 床 |
农业机械 |
工程机械 |
|||
磨床 |
组合机床 |
龙门刨床 |
拉床 |
|||
工作压力/MPa |
ale;2 |
3~5 |
le;8 |
8~10 |
10~16 |
20~32 |
2.2 液压马达的设计计算
2.2.1 计算液压马达排量
液压马达排量根据下式决定:
(2.1)
式中:T为液压马达的负载力矩(N·m);为液压马达进出口压力差();为液压马达的机械效率,一般齿轮和柱塞马达取0.9~0.95,叶片马达取0.8~0.9。
2.2.2 计算液压马达所需流量液压马达的最大流量
(2.2)
式中:Vm为液压马达排量(m3/r);nmax为液压马达的最高转速(r/s)。
3 液压元件的选择
3.1 液压泵的确定与所需功率的计算
3.1.1 液压泵的确定
确定液压泵的最大工作压力。液压泵必须经过工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失Sigma;Delta;p,亦即
(3.1)
包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统为(2~5)times;105Pa,用调速阀及管路复杂的系统为(5~15)times;105Pa,也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照表1.3选取。
表3.1 常用中、低压各类阀的压力损失(Delta;pn)
阀名 |
Delta;pn(times;105Pa) |
阀名 |
Delta;pn (times;105Pa) |
阀名 |
Delta;pn (times;105Pa) |
阀名 |
Delta;pn (times;105Pa) |
单向阀 |
0.3~0.5 |
背压阀 |
3~8 |
行程阀 |
1.5~2 |
转阀 |
1.5~2 |
换向阀 |
1.5~3 |
节流阀 |
2~3 |
顺序阀 |
1.5~3 |
调速阀 |
3~5 |
3.1.2 确定液压泵的流量qB
泵的流量qB根据执行元件动作循环所需最大流量qmax和系统的泄漏确定。
(1) 多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即
(3.2)
式中:K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;为同时动作的液压缸(或马达)的最大总流量(m3/s)。
(2) 选择液压泵的规格:根据上面所计算的最大压力pB和流量qB,查液压元件产品样本,选择与pB和qB相当的液压泵的规格型号。
表3.2 液压泵的总效率
液压泵类型 |
齿轮泵 |
螺杆泵 |
叶片泵 |
柱塞泵 |
总效率 |
0.6~0.7 |
0.65~0.80 |
0.60~0.75 |
0.80~0.85 |
按上述功率和泵的转速,可以从产品样本中选取标准电动机,再进行验算,使电动机发出最大功率时,其超载量在允许范围内。
3.2 阀类元件的选择
3.2.1 选择依据
选择依据是:额定压力,最大流量,运行方式,安装固定方式,压力损失值,工作性能参数和工作寿命等。
3.2.2 选择阀类元件应注意的问题
(1) 剩余内容已隐藏,支付完成后下载完整资料
资料编号:[453452],资料为PDF文档或Word文档,PDF文档可免费转换为Word