羧甲基壳聚糖基的脲酶纳米反应器的催化活性研究毕业论文
2021-06-08 01:23:43
摘 要
酶纳米反应器,一种囊泡有半渗透膜的纳米包封酶系统,它允许小分子底物和产物的跨膜扩散,同时也保留大分子酶在囊泡里面,它最近引起科研界相当大的关注。本设计基于壳交联纳米凝胶囊的高稳定性和其具有的亲水交联网络的良好半透性来构建一种新型酶纳米反应器,并用脲酶为模型来对其催化功能展开生物学评价。简单易操作的制备光交联纳米凝胶囊的方法,为构建生物纳米凝胶囊制备新工艺的研究铺垫了基础;利用包封酶的纳米凝胶囊用作酶纳米反应器的研究,有助于理想的酶纳米反应器或给药系统的发展。
论文主要研究了新型酶纳米反应器的制备方法。在之前的存在的方法中,以脂质体和聚质体为基质构建的酶纳米反应器。前者缺少稳定性,易发生酶的泄漏;后者其双层膜中的疏水层较厚,不利于亲水性小分子(如酶的底物)的渗透,需要在膜(或壳)中插入通道蛋白。本文在已知方法的基础上进行改进,使得到更加简便的制备方法,但所提出的方法并不一定是最佳的方案,这一次的设计只是为之后能进一步研究做好了准备。聚合物纳米粒结构材料在生物学及生物医学领域都有着极大的应用价值,其组成、构造和功能的控制依然是研究者不懈的追求目标。本设计选用了生物相容性和生物可降解性良好的羧甲基壳聚糖为基质,来制备生物纳米凝胶囊,并实现组装囊的同时原位封装酶(选用能高度专一性地催化人体体内的尿素水解生成氨和二氧化碳,并能用于清除慢性肾衰竭病患者体内血液中过量的尿素的脲酶为模型),获得封装脲酶的纳米凝胶囊即羧甲基壳聚糖基的脲酶纳米反应器。
研究结果表明空心构造的壳交联纳米凝胶囊有助于保存酶的活性,并有助于催化水解,而且易于降解或回收。同时,其制备方法简单易操作,制备条件主要是常温,并且无需加入任何交联剂或其他物质,有一定的可行性,但还需进一步研究完善。
关键词:羧甲基壳聚糖;生物纳米凝胶囊;酶纳米反应器;
Abstract
Enzyme nanoreactors, a class of nano-scaled enzyme-encapsulated systems with a semi-permeable vesicular membrane ,which only allows trans-membrane diffusion of small molecular substrates and products while maintaining the macromolecular enzymes in the vesicles inside, recently triggered considerable interest. The design based on the high stability of the shell-crosslinked nano-gel capsules,which have great semi-permeable of hydrophilic crosslinked network ,to construct a new tyoe of enzyme nanoreactors, and use urease as model to biological evaluate its catalytic function. The simple method of preparing photo cross-linked nano-gel capsules is a foundation for the preparation of new technology for construction of biomimetic nano-gel capsules. Study on using enzyme-encapsulated of nano-gel capsules as enzyme nanoreactors, contribute to the development of ideal enzyme nanoreactors or drug delivery system .
In this paper, the preparation method of the new tyoe of enzyme nanoreactors was studied. In the prior method, the enzyme nanoreactors was constructed with liposome and liposome.The former is lack of stability, and the leakage of enzyme is easy to occur. The latter is thicker in the hydrophobic layer of the bilayer membrane, which is not conducive to the permeation of hydrophilic small molecules (such as enzyme substrates), and needs to insert channel protein into the membrane (or shell). This page is based on the known methods to improve to get more simple and convenient preparation method, but the proposed method is not necessarily the best solution, this time the design was just ready for the further research. Polymer nanoparticle materials have wide range of application prospects in the fields of biology and biomedicine. The control of their composition, structure and function is still the great goal of the researchers. This design chooses the great biocompatibility and biodegradability of carboxymethyl chitosan as a matrix of biomimetic nano-gel capsules were prepared, and achieves encapsulated enzymes in situ while assembled vesicles(choose urease which can be used to high specificity to the catalytic body in hydrolysis of urea into ammonia and carbon dioxide, an used to clear excess urea in the blood in the body of a chronic renal failure patients as a model), to get the urease encapsulated nano-gel capsules that also called carboxymethyl chitosan based urease nanoreactors.
The results showes that the shell cross-linking nano-gel capsules with the hollow structure can help to keep the activity of the enzyme, and it is helpful for the catalytic hydrolysis, and it is easy to be degraded or recovered. At the same time,the preparation method is simple and easy to operate, the preparation condition is mainly at room temperature, and there is no need to add any cross-linking agent or other substance, and there is a certain feasibility, but also need to be further studied and improved.
Key Words:Carboxymethyl chitosan;Biological nano-gel capsule;Enzyme nanoreactor
目 录
中文摘要 Ⅰ
Abstract Ⅱ
第一章 绪论 1
1.1纳米药物载体的介绍 1
1.1.1纳米药物载体的简介 1
1.1.2常见纳米反应器 1
1.2酶纳米反应器的介绍 2
1.2.1酶纳米反应器的载体研究现状 3
1.2.2酶纳米反应器的制备研究现状 4
1.3本论文的设计思路和主要研究内容 5
1.3.1设计思路 5
1.3.2研究内容 5
第二章 羧甲基壳聚糖基纳米囊的制备与表征 6
2.1引言 6
2.2实验部分 6
2.2.1材料和仪器 6
2.2.2羧甲基壳聚糖基纳米囊的制备 7
2.2.3羧甲基壳聚糖基纳米囊的表征 7
2.3结果与分析 8
2.3.1所得结果 8
2.3.2结果分析 9
第三章 羧甲基壳聚糖基脲酶纳米反应器的制备与表征 10
3.1引言 10
3.2 实验部分 10
3.2.1材料和仪器 10
3.2.2羧甲基壳聚糖基脲酶纳米反应器的制备 11
3.2.3羧甲基壳聚糖基脲酶纳米反应器的表征 12
3.3结果和分析 12
3.3.1酶包封结果 13
3.3.2酶纳米反应器半透性结果 14
3.3.3结果分析 14
第四章 脲酶纳米反应器的催化活性研究 15
4.1引言 15
4.2实验部分 15
4.2.1 材料和仪器 15
4.2.2脲酶纳米反应器的体内外催化活性研究 15
4.3 结果和分析 16
4.3.1所得结果 16
4.3.2结果分析 17
第五章 结论 18
致谢 19
参考文献 20
- 绪论
1.1纳米药物载体的介绍
1.1.1纳米药物载体的简介
纳米技术从发现至今都在许多领域引起了极大的关注度,作为近几年在市场上最具有应用前景的新兴科学技术,它成为了医学等方面研究的重点,其隐藏的重要性是显而可见的,几乎所有的发达国家都投入了大量的资金和精力在它的研究上。大致来说,纳米材料是指微观结构的三维空间至少在一维方向上是在纳米尺度(0.1~100nm)范围内调制的材料,包括了零维方向上的原子团簇和纳米微粒、一维方向调制的纳米丝或线、二维方向调制的纳米颗粒膜(涂层),以及三维方向调制的纳米相材料[1]。纳米材料的某些特殊特性是以往传统材料并不具有的,这是由于其基本结构单元在纳米级量度范围内,存在有极大的表面活性和比表面积,这样可以促使材料表面的相互作用增加[2]。
由于纳米材料的一些特性,它特别适合用作药物载体,有助于提高药物利用率、定向输送药物、增加膜的渗透性等。用来治疗病症的药物物质,纳米载体通常以包封在其内部或附着在其外表面这两种方式来负载药物分子。并且由于所用材料和制备工艺的差别,常将可用于药物载体的纳米材料分为纳米球、纳米囊、固体脂质纳米粒、纳米胶束、纳米乳和药质体,等[3]。